This involved beefing up the Python dispatcher to handle torch_dispatch.
Given a HOP and a torch_dispatch Tensor subclass:
- the HOP will show up in the subclass's `__torch_dispatch__`
- you can also use HOP.py_impl to register a rule for the HOP x
subclass interaction
- (coming soon) we'll offer a way to open register HOP x subclass
interaction without needing to touch the subclass's
`__torch_dispatch__` or the HOP's .py_impl.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130606
Approved by: https://github.com/ydwu4
This is a lot of files changed! Don't panic! Here's how it works:
* Previously, we set `follow_imports = silent` for our mypy.ini configuration. Per https://mypy.readthedocs.io/en/stable/running_mypy.html#follow-imports, what this does is whenever we have an import to a module which is not listed as a file to be typechecked in mypy, we typecheck it as normal but suppress all errors that occurred in that file.
* When mypy is run inside lintrunner, the list of files is precisely the files covered by the glob in lintrunner.toml, but with files in excludes excluded.
* The top-level directive `# mypy: ignore-errors` instructs mypy to typecheck the file as normal, but ignore all errors.
* Therefore, it should be equivalent to set `follow_imports = normal`, if we put `# mypy: ignore-errors` on all files that were previously excluded from the file list.
* Having done this, we can remove the exclude list from .lintrunner.toml, since excluding a file from typechecking is baked into the files themselves.
* torch/_dynamo and torch/_inductor were previously in the exclude list, because they were covered by MYPYINDUCTOR. It is not OK to mark these as `# mypy: ignore-errors` as this will impede typechecking on the alternate configuration. So they are temporarily being checked twice, but I am suppressing the errors in these files as the configurations are not quite the same. I plan to unify the configurations so this is only a temporary state.
* There were some straggler type errors after these changes somehow, so I fixed them as needed. There weren't that many.
In the future, to start type checking a file, just remove the ignore-errors directive from the top of the file.
The codemod was done with this script authored by GPT-4:
```
import glob
exclude_patterns = [
...
]
for pattern in exclude_patterns:
for filepath in glob.glob(pattern, recursive=True):
if filepath.endswith('.py'):
with open(filepath, 'r+') as f:
content = f.read()
f.seek(0, 0)
f.write('# mypy: ignore-errors\n\n' + content)
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118414
Approved by: https://github.com/thiagocrepaldi, https://github.com/albanD
Continuation of #112185, following the design in this [doc](https://docs.google.com/document/d/1ipSxcTzEMMOAPvxP-YJlD5JBZZmIGgh8Q34ixtOUCRo).
Summary:
* Introduce `SubclassSymbolicPolicy` containing separate dynamic dim / constraint policies for the outer and inner tensors
* Expand the automatic dynamic algorithm to recurse into inner tensors and produce one of these for a subclass instance
* Maintain legacy behavior for subclasses by recursively calling `mark_dynamic()` on inner tensors *of the same dim as outer* when `mark_dynamic(outer, ...)` is called
* Addresses this: 6a86cf00ad/torch/_dynamo/variables/builder.py (L1750)
* Add `outer_size` and `outer_stride` arguments to `__tensor_unflatten__()` so that you can find out what symbols were allocated for the outer size / stride (you are expected to return a tensor that compares equal to the outer symbols)
* Signatures now:
```python
# attrs is a list of inner tensor attributes on x; inner_tensor = getattr(x, attr)
# ctx is anything useful for rebuilding the class we want to guard on
attrs, ctx = x.__tensor_flatten__()
...
# inner_tensors is a dict of {attr -> tensor}
# ctx is taken unmodified from flattening and (eventually) guarded on
# outer_size is the expected size of the output; possibly symbolic
# outer_stride is the expected strides of the output; possibly symbolic
y = MySubclass.__tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride)
# at the __tensor_unflatten__() call-site in PT2, we assert y.shape == outer_size and y.stride() == outer_stride
# the assert simplifies symbols when there are relationships between outer and inner symbols
```
* Size info needed for `NestedTensor` at least, stride info needed for `DTensor` at least
* Punting on `outer_storage_offset` because storage_offset handling is horribly broken in PT2 right now
* ~~Add new `__tensor_mark_dynamic__()` to allow overriding the behavior of mark_dynamic on a per-subclass basis~~ (booted to future work)
* ~~Add guards for tensor subclasses by calling `__tensor_flatten__()` in the guard to test equality on `ctx`~~
* Now handled in #114469
* Next PR: add TENSOR_MATCH guards on inner tensors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114311
Approved by: https://github.com/ezyang, https://github.com/drisspg, https://github.com/voznesenskym, https://github.com/bdhirsh
This is a PoC of AOTDispatch support. This PR actually works on basic examples, and I'm working on testing it out on `DTensor` (with @wanchaol), `SemiStructuredSparsityTensor` (with @jcaip), and `FP8Tensor`.
There are some design decisions baked into the PR that I think we need consensus on though - so I'm planning on writing a larger design doc to go over the changes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104483
Approved by: https://github.com/ezyang
I missed a few tests the first time around - this fixes out= op handling for `_return_and_correct_aliasing`, which failed a few tests in the python functionalization <> AOTAutograd PR above.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109662
Approved by: https://github.com/ezyang
ghstack dependencies: #108654
This PR adds a `return_and_correct_aliasing()` utility, that wrapper subclasses can use to get correct aliasing. I updated `TwoTensor` to use it, and added some testing that the aliasing of my `TwoTensor` subclass now matches the aliasing behavior of normal tensors.
Right now my test just uses a few hand-picked opinfos (that have varying aliasing behavior). I thought all op infos might be overkill (does that take a while to run?), but I'm happy to add them all if people prefer.
One more general question about this PR: eventually, proper aliasing will be a **requirement** in order for AOTAutograd to handle aliasing/mutations on subclasses properly during compilation. How can we make sure that wrapper subclasses use this API? A few options (from talking to Richard):
(1) Yolo require subclasses to use the API and hope users do as well (what this PR does)
(2) Yolo require subclasses to use the API, but add a kwarg to `_make_wrapper_subclass`, e.g. `manual_aliasing=True`, that torch.compile checks for before allowing the subclass to be used in compilation
(3) Automatically run this API in our python fallback, for **every** tensor subclass that currently implements `__tensor_flatten__` (aka only the "traceable" subclasses)
(4) Automatically run this API in our python fallback, for **every** tensor subclass. This would be a bit higher blast radius, since it would change the existing aliasing behavior of wrapper subclasses. Maybe.. this is the right thing to do though?
Either way, my tentative plan is to do (1) to unblock, and revisit this later once we want to come up with public docs + a more general "tensor subclass in PT2 requirements" plan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107915
Approved by: https://github.com/ezyang
**Update:** Made refactor of the original PR. See the original description below, but here I'll describe the updates:
(1) TLS changes in `TorchDispatchModeTLS.h/cpp`.
I added a `TorchDispatchModeKey` enum, that (for now) just contains PROXY and FAKE. The ModeTLS used to just contain a `std::vector<std::shared_ptr<c10::SafePyObject>>` corresponding to the mode stack. It now **also** contains a separate array of "infra modes", indexed by mode key (PROXY and FAKE, with a new addition, FUNCTIONAL, coming later in the stack).
`TorchDispatchModeTLS::push_onto_stack` and `TorchDispatchModeTLS::pop_stack` are now a bit more complicated. Pushing accepts an optional mode_key, which if set, tells us to add the given mode directly to our "infra_modes" array. Popping will first check the "user mode" stack, before trying to pop anything from the infra mode stack. It also optionally returns the mode key of the mode we popped if there was one - that way if we push that same mode back onto the TLS later, we know where it goes.
`TorchDispatchModeTLS::dispatch_mode_enabled()` now accepts an optional `skip_infra_modes` param, so you can separately query if there are "any modes at all", or if there are "any user modes".
`TorchDispatchModeTLS::get/set/unset_mode()` all take in a mode key, and get/set/unset the mode at that particular mode key (meaning they are only meant to be used for infra modes).
There were also some mild codegen changes to support the new enum
(2) `fake_tensor.py/proxy_tensor.py/_python_dispatch.py`
The way I tell the infra that certain subclasses/modes are "infra" is through the enum: I gave `FakeTensor` and `FakeTensorMode` a `self._mode_key = torch._C.TorchDispatchModeKey.FAKE`. `TorchDispatchMode.__enter/exit__()` (in `_python_dispatch.py` now check if the current mode has a mode key, and if so they plumb it into any `push_onto_stack()` calls (which eventually instructs `TorchDispatchModeTLS` where to put the mode). Same thing for `ProxyTorchDispatchMode`.
I also had to change both of these mode's enter/exit, to handle the fact that there can no longer be multiple proxy/fake modes on the mode stack at once. I updated them both to have a `self.enter_stack: List[Optional[TorchDispatchMode]]` - whenever we push a given mode in `__enter__`, we remove the current ambient fake/proxy mode from the mode stack, and save it in `enter_stack`, so that on exit we can reset the state properly.
(2) dispatching logic in `python_arg_parser.cpp`
This is where the core dispatching logic changes are. I added two helpers, `dispatch_on_subclass()` and `dispatch_on_mode()`. The overall dispatching order is now:
```
(a) dispatch_on_mode() # try user modes first (where the mode stack automatically considers infra modes last)
(b) dispatch_on_subclass() # try user subclasses next (skipping infra subclasses)
(c) dispatch_on_subclass() # try infra subclasses next (skipping user subclasses)
```
Note that we still want "user subclasses" to run before "infra modes". As Ed helped me realize, this will work today: If proxy/fake modes in step 1, they'll return NotImplemented if they see a user subclass, allowing us to redispatch to the user subclass.
How do (b) and (c) distinguish between user and infra subclasses? Infra subclasses (FakeTensor, and later FunctionalTensor) are required to have a `_mode_key` hidden on the subclass - so we filter via arguments that do/don't have the _mode_key.
(3) I also changed `DoubleTensor` to `TwoTensor` to minimize confusion (@albanD pointed out that DoubleTensor would be easily confused with `torch.FloatTensor` and friends).
----- original description below -----
The main purpose of this PR is to fix the "ordering problem" between torch_dispatch modes, where we want to ensure that our Fake and Proxy dispatch modes always run **after** any dispatch modes created by the user, regardless of where they are in the stack. See this doc for more details: https://docs.google.com/document/d/1COQ291nOZvtFnzGTQMJqoYZ3sttEYFw_7HbfSyL8gcA/edit
Full set of changes below. I ended up including a few semi-related changes in this PR that I documented - but if folks would rather I separate them out, happy to try to do that.
**(1) Add dedicated TLS slots for FakeTensorMode and ProxyTensorMode**
This is the main component of this PR. There are two new slots, `TorchDispatchModeTLS.fake_mode_` and `TorchDispatchModeTLS.proxy_mode_`, which correspond to a single "global" fake and proxy mode. There is now an invariant that `torchDispatchModeState.stack_` can never contain either of these modes.
I also added a `TorchDispatchModeTLS::maybe_highest_mode()` helper that consults the `stack_` as well as both the proxy and fake slots, and returns the highest priority mode - this is because there are a few places in the codebase where we legitimately want to get the highest priority mode, *including* fake or proxy, if one is set.
This also made the implementations of the existing `disable_proxy_modes_tracing()` and `get_innermost_proxy_mode()` marginally simpler.
**(2) Updated the dispatching logic in handle_torch_function_no_python_arg_parser()**
This is the function that actually figures out which torch_dispatch implementation to call, given the current mode stack and tensor subclass inputs. This function got marginally more complicated as part of the refactor: First we inspect the mode stack and any non-fake subclass inputs. Then we check for the proxy mode slot. Then we check for the Fake mode slot, before finally checking for any fake subclass inputs.
**(3) new python `_get_fake_tensor_mode()` and `_get_proxy_tensor_mode()` API's**
Before, if you wanted to see if proxy or fake modes were active in python, you would have to consult the mode stack. Since these two modes are no longer part of the actual mode stack, I added two new API's to directly check if either proxy or fake modes are active.
**(4) Allow traceable tensor subclasses to access storages from python**
This is convenient later in the stack, where AOTAutograd needs to detect aliasing of inputs and outputs, where those inputs and outputs might be tensor subclasses. Previously, `x.untyped_storage()` would raise an error if `x` was a subclass. In this PR, I tried to relax this constraint as little as possible: `THPVariable_storage()` will only try to return a storage to python if the tensor subclass that you are passing in is "traceable"
**(5) Fixed subclass fakeification**
@wanchaol recently added support to be able to fakeify tensor subclasses. That fakeification logic works in most cases, but there is one case it doesn't handle: autograd metadata. In particular, since autograd sees our tensor subclasses and not their desugared tensors, we need to make sure that our fakeified subclass has the same autograd metadata as the original subclass. I updated `meta_utils.py` to make sure that the autograd metadata is correct.
**(6) make tensor subclasses resizeable**
Previously we didn't allow tensor subclasses to be resizeable. I ran into an issue where fakeifying a tensor subclass occasionally requires swapping out its storage, which can involve resizing the tensor. Mechanically, this required updating `at::for_blob()` to expose a way to request that the tensor that you create has resizeable storage, and then using this new API in `_make_wrapper_tensor()`.
**(7) Added a basic DoubleTensor subclass for testing**
I use this subclass more later in this stack in my AOTAutograd tests - but it serves as a simple subclass example to test the dispatch ordering in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104482
Approved by: https://github.com/ezyang
ghstack dependencies: #107415