Commit Graph

24 Commits

Author SHA1 Message Date
3bf922a6ce Apply UFMT to low traffic torch modules (#106249)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/106249
Approved by: https://github.com/Skylion007
2023-07-29 23:37:30 +00:00
5b1cedacde [BE] [2/3] Rewrite super() calls in functorch and torch (#94588)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94588
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-02-10 21:16:33 +00:00
4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00
3bcc19b29a Add __all__ to various submodules in torch.fx, distributions, distributed, package (#80367)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80367
Approved by: https://github.com/albanD
2022-06-27 21:27:30 +00:00
40576bceaf Add mode property to distributions. (#76690)
This PR fixes #69466 and introduces some other minor changes. Tests are somewhat more involved because a reference implementation in `scipy` is not available; tests proceed differently for discrete and continuous distributions.

For continuous distributions, we evaluate the gradient of the `log_prob` at the mode. Tests pass if the gradient is zero OR (the mode is at the boundary of the support of the distribution AND the `log_prob` decreases as we move away from the boundary to the interior of the support).

For discrete distributions, the notion of a gradient is not well defined. We thus "look" ahead and behind one step (e.g. if the mode of a Poisson distribution is 9, we consider 8 and 10). If the step ahead/behind is still within the support of the distribution, we assert that the `log_prob` is smaller than at the mode.

For one-hot encoded distributions (currently just `OneHotCategorical`), we evaluate the underlying mode (i.e. encoded as an integral tensor), "advance" by one label to get another sample that should have lower probability using `other = (mode + 1) % event_size` and re-encode as one-hot. The resultant `other` sample should have lower probability than the mode.

Furthermore, Gamma, half Cauchy, and half normal distributions have their support changed from positive to nonnegative. This change is necessary because the mode of the "half" distributions is zero, and the mode of the gamma distribution is zero for `concentration <= 1`.

cc @fritzo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76690
Approved by: https://github.com/neerajprad
2022-05-11 18:26:56 +00:00
81e36d02a6 Improve error message on invalid values to Distribution methods (#61056)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/18133

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61056

Reviewed By: jbschlosser

Differential Revision: D29510173

Pulled By: neerajprad

fbshipit-source-id: 205ec7de6c8576a73e77ee4bf01c30e99b38a52e
2021-07-06 15:44:55 -07:00
c88ac25679 Check for internal memory overlap in some indexing-type functions (#43423)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/43423

Test Plan: Imported from OSS

Reviewed By: ezyang

Differential Revision: D23298652

Pulled By: zou3519

fbshipit-source-id: c13c59aec0c6967ef0d6365d782c1f4c98c04227
2020-09-02 08:51:50 -07:00
75309b45f3 explicitly provide memory format when calling to clone() at Indexing.cpp
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28660

Test Plan: Imported from OSS

Differential Revision: D18333346

Pulled By: ifedan

fbshipit-source-id: 06590205d883a5096388a4ae318389244130972d
2019-11-07 05:38:32 -08:00
8e1e29124d Fix precision issue with expansion that prefers 'probs' over 'logits' (#18614)
Summary:
I have experienced that sometimes both were in `__dict__`, but it chose to copy `probs` which loses precision over `logits`. This is especially important when training (bayesian) neural networks or doing other type of optimization, since the loss is heavily affected.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18614

Differential Revision: D14793486

Pulled By: ezyang

fbshipit-source-id: d4ff5e34fbb4021ea9de9f58af09a7de00d80a63
2019-04-05 13:07:01 -07:00
36e27aa092 Typos and broken RSTs fixed in torch.distribution (#16136)
Summary:
- probabilty -> probability
- make long lines break
- Add LogitRelaxedBernoulli in distribution.rst
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16136

Differential Revision: D13780406

Pulled By: soumith

fbshipit-source-id: 54beb975eb18c7d67779a9631dacf7d1461a6b32
2019-01-23 03:03:10 -08:00
6911ce19d7 Remove _finfo; replace _finfo usage with torch.finfo (#15165)
Summary:
This PR removes the usage of _finfo defined in torch.distributions.utils and changes the call sites
to use torch.finfo instead

Differential Revision: D13451936

Pulled By: soumith

fbshipit-source-id: 6dbda3a6179d9407bc3396bf1a2baf3e85bc4cf2
2018-12-13 14:30:27 -08:00
2431eac7c0 Ensure most Distribution methods are jittable (#11560)
Summary:
This adds tests in tests/test_distributions.py to ensure that all methods of `Distribution` objects are jittable.

I've replaced a few samplers with jittable versions:
- `.uniform_()` -> `torch.rand()`
- `.exponential_()` -> `-(-torch.rand()).log1p()`
- `.normal_()` -> `torch.normal(torch.zeros(...), torch.ones(...), ...)`

Some jit failures remain, and are marked in test_distributions.py
- `Cauchy` and `HalfCauchy` do not support sampling due to missing `.cauchy_()`
- `Binomial` does not support `.enumerate_support()` due to `arange` ignoring its first arg.
- `MultivariateNormal`, `LowRankMultivariateNormal` do not support `.mean`, `.entropy`

- [x] Currently some tests fail (I've skipped those) due to unavailability of `aten::uniform` and `aten::cauchy` in the jit. Can someone suggest how to add these? I tried to add declarations to `torch/csrc/ir.cpp` and `torch/csrc/passes/shape_analysis.cpp`, but that resulted in "Couldn't find operator" errors.
- [x] There are still lots of `TracerWarning`s that something doesn't match something. I'm not sure whether these are real.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11560

Differential Revision: D9816327

Pulled By: apaszke

fbshipit-source-id: 72ec998ea13fc4c76d1ed003d9502e0fbaf728b8
2018-09-13 19:55:01 -07:00
80fa8e1007 Add .expand() method to distribution classes (#11341)
Summary:
This adds a `.expand` method for distributions that is akin to the `torch.Tensor.expand` method for tensors. It returns a new distribution instance with batch dimensions expanded to the desired `batch_shape`. Since this calls `torch.Tensor.expand` on the distribution's parameters, it does not allocate new memory for the expanded distribution instance's parameters.

e.g.
```python
>>> d = dist.Normal(torch.zeros(100, 1), torch.ones(100, 1))
>>> d.sample().shape
  torch.Size([100, 1])
>>> d.expand([100, 10]).sample().shape
  torch.Size([100, 10])
```

We have already been using the `.expand` method in Pyro in our [patch](https://github.com/uber/pyro/blob/dev/pyro/distributions/torch.py#L10) of `torch.distributions`. We use this in our models to enable dynamic broadcasting. This has also been requested by a few users on the distributions slack, and we believe will be useful to the larger community.

Note that currently, there is no convenient and efficient way to expand distribution instances:
 - Many distributions use `TransformedDistribution` (or wrap over another distribution instance. e.g. `OneHotCategorical` uses a `Categorical` instance) under the hood, or have lazy parameters. This makes it difficult to collect all the relevant parameters, broadcast them and construct new instances.
 - In the few cases where this is even possible, the resulting implementation would be inefficient since we will go through a lot of broadcasting and args validation logic in `__init__.py` that can be avoided.

The `.expand` method allows for a safe and efficient way to expand distribution instances. Additionally, this bypasses `__init__.py` (using `__new__` and populating relevant attributes) since we do not need to do any broadcasting or args validation (which was already done when the instance was first created). This can result in significant savings as compared to constructing new instances via `__init__` (that said, the `sample` and `log_prob` methods will probably be the rate determining steps in many applications).

e.g.
```python
>>> a = dist.Bernoulli(torch.ones([10000, 1]), validate_args=True)

>>> %timeit a.expand([10000, 100])
15.2 µs ± 224 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit dist.Bernoulli(torch.ones([10000, 100]), validate_args=True)
11.8 ms ± 153 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```

cc. fritzo, apaszke, vishwakftw, alicanb
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11341

Differential Revision: D9728485

Pulled By: soumith

fbshipit-source-id: 3b94c23bc6a43ee704389e6287aa83d1e278d52f
2018-09-11 06:56:18 -07:00
434e943b08 Fix to distribution.__repr__ with lazy attributes (#11263)
Summary:
`__repr__` currently fails for distributions with lazy attributes in PyTorch master, throwing a `KeyError`. This fixes the issue.

**Additionally:**
 - Added `logits` to `arg_constraints` for distributions that accept either `probs` or `logits`. This is both to have `__repr__` display the `logits` param when available, and to be able to do validation checks (e.g. NaN checks) when the logit parametrization is used. fritzo, alicanb - I think there were reasons why we had not done so in the first place, but I am unable to recall now. It passes all the tests, but let me know if there is something that I am missing at the moment.
 - There are certain distributions, e.g. `OneHotCategorical` which won't show any parameters because it uses a `categorical` instance under the hood and neither `logits` / `probs` in `arg_constraints` are present in the instance's `__dict__`. This isn't addressed in this PR.

cc. vishwakftw, fritzo, nadavbh12, apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11263

Differential Revision: D9654959

Pulled By: apaszke

fbshipit-source-id: 16f5b20243fe8e2c13e9c528050d4df0b8ea6e45
2018-09-05 09:55:51 -07:00
f940af6293 Bag of Distributions doc fixes (#10894)
Summary:
- Added `__repr__` for Constraints and Transforms.
- Arguments passed to the constructor are now rendered with :attr:

Closes https://github.com/pytorch/pytorch/issues/10884
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10894

Differential Revision: D9514161

Pulled By: apaszke

fbshipit-source-id: 4abf60335d876449f2b6477eb9655afed9d5b80b
2018-08-27 09:55:27 -07:00
4ad6e53557 fix the deprecate argument in bce with logits (#9162)
Summary:
As title.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9162

Differential Revision: D8753892

Pulled By: SsnL

fbshipit-source-id: 7ce9ac16571a550a3fa7b86d68eb5c077a5956fb
2018-07-07 10:26:35 -07:00
3cbaa6b785 [ready] Clean up torch.distributions (#8046) 2018-06-02 16:54:53 +02:00
d564ecb4a5 Update docs with new tensor repr (#6454)
* Update docs with new tensor repr

* remove cuda in dtype

* remove changes to gloo submodule

* [docs] document tensor.new_* ctor

* [docs] Add docs for tensor.to(), tensor.float(), etc

* [docs] Moar examples for docs.

* [docs] Warning for tensor ctor copy behavior

* Quick fix

* [docs] Document requires_grad_()

* [docs] Add example for requires_grad_()

* update slogdet and *fft

* update tensor rst

* small fixes

* update some docs

* additional doc changes

* update torch and tensor docs

* finish changing tensor docs

* fix flake8

* slogdet with negative det

* Update functional.py tensor ctors

* Fix nll_loss docs

* reorder to move device up

* torch.LongTensor -> torch.tensor or torch.empty in docs

* update tensor constructors in docs

* change tensor constructors

* change constructors

* change more Tensor() to tensor()

* Show requires_grads_ docs

* Fix set_default_dtype docs

* Update docs with new tensor repr

* remove cuda in dtype

* remove changes to gloo submodule

* [docs] document tensor.new_* ctor

* [docs] Add docs for tensor.to(), tensor.float(), etc

* [docs] Moar examples for docs.

* [docs] Warning for tensor ctor copy behavior

* Quick fix

* [docs] Document requires_grad_()

* [docs] Add example for requires_grad_()

* update slogdet and *fft

* update tensor rst

* small fixes

* update some docs

* additional doc changes

* update torch and tensor docs

* finish changing tensor docs

* fix flake8

* slogdet with negative det

* Update functional.py tensor ctors

* Fix nll_loss docs

* reorder to move device up

* torch.LongTensor -> torch.tensor or torch.empty in docs

* update tensor constructors in docs

* change tensor constructors

* change constructors

* change more Tensor() to tensor()

* Show requires_grads_ docs

* Fix set_default_dtype docs

* Link to torch.no_grad, etc, from torch doc

* Add dtype aliases to table

* regen docs again

* Tensor attributes stub page

* link to inplace sampling

* Link torch.dtype, device, and layout

* fix dots after nonfinite floats

* better layout docs
2018-04-21 07:35:37 -04:00
b2da9fd220 [distributions] Rename .params to .arg_constraints, fix logic (#5989) 2018-03-25 15:24:32 +02:00
7f864bbe52 Fixed distribution constraints and added some test cases for distributions parameter check (#5358) 2018-03-15 23:11:20 +01:00
54b4cdeffa Replace all uses of 'Tensor or Variable' with 'Tensor' (#5508)
Replace all uses of 'Tensor or Variable'  and 'Variable or Tensor' with 'Tensor'
2018-03-02 14:26:11 -05:00
a4d0a74cee Ensure Distribution.sample() result is detached (#5086) 2018-02-14 01:32:11 +01:00
20fbdb9a8b Adding mean, variance, stddev to distributions (#4923) 2018-01-31 00:26:32 +01:00
f72d86e0d3 Implement geometric distribution (#4708) 2018-01-19 21:45:14 +01:00