Commit Graph

17163 Commits

Author SHA1 Message Date
4c74cf7489 Move ideep singleton registration to ATen from C2. (#18335)
Summary:
Since we are going to add ideep to ATen, and ATen is always compiled, it makes sense to have the registration in ATen rather than C2.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18335

Reviewed By: bddppq

Differential Revision: D14578652

Pulled By: gchanan

fbshipit-source-id: 4d77fcfc21a362b21d5291a127498aa722548873
2019-04-01 08:00:33 -07:00
ddbfdc911d Create torch/lib directory before copying _C.lib on Windows environment. (#18666)
Summary:
`python setup.py develop` fails with following messages.
~~~
...
-- Building with NumPy bindings
-- Not using cuDNN
-- Not using MIOpen
-- Not using CUDA
-- Using MKLDNN
-- Not using NCCL
-- Building without distributed package

Copying extension caffe2.python.caffe2_pybind11_state
Copying caffe2.python.caffe2_pybind11_state from torch\Lib\site-packages\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd to C:\data\source\pytorch\build\lib.win-amd64-3.7\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd
copying torch\Lib\site-packages\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd -> C:\data\source\pytorch\build\lib.win-amd64-3.7\caffe2\python
building 'torch._C' extension
creating build\temp.win-amd64-3.7
creating build\temp.win-amd64-3.7\Release
creating build\temp.win-amd64-3.7\Release\torch
creating build\temp.win-amd64-3.7\Release\torch\csrc
...
creating C:\data\source\pytorch\build\lib.win-amd64-3.7\torch
C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\bin\HostX64\x64\link.exe /nologo /INCREMENTAL:NO /LTCG /nodefaultlib:libucrt.lib ucrt.lib /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:C:\data\source\pytorch\torch\lib /LIBPATH:C:\data\dlenv\libs /LIBPATH:C:\data\dlenv\PCbuild\amd64 "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\ATLMFC\lib\x64" "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\lib\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6.1\lib\um\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.17763.0\ucrt\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.17763.0\um\x64" shm.lib torch_python.lib /EXPORT:PyInit__C build\temp.win-amd64-3.7\Release\torch/csrc/stub.obj /OUT:build\lib.win-amd64-3.7\torch\_C.cp37-win_amd64.pyd /IMPLIB:build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.lib /NODEFAULTLIB:LIBCMT.LIB
   ライブラリ build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.lib とオブジェクト build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.exp を作成中
コード生成しています。
コード生成が終了しました。
copying build\lib.win-amd64-3.7\torch\_C.cp37-win_amd64.pyd -> torch
copying build\lib.win-amd64-3.7\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd -> caffe2\python
copying build/temp.win-amd64-3.7/Release/torch/csrc/_C.cp37-win_amd64.lib -> build/lib.win-amd64-3.7/torch/lib/_C.lib
error: could not create 'build/lib.win-amd64-3.7/torch/lib/_C.lib': No such file or directory
~~~

When `python setup.py install` is executed, `torch/lib`  has been created by previous process (copying many files) and this copy succeeds. But in develop mode, that process does not executed and this copy fails.

This patch creates `torch/lib` directory if do not exist.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18666

Differential Revision: D14704269

Pulled By: ezyang

fbshipit-source-id: b2d7c698a906b945bf34bb78f17b91b4fdfd3294
2019-04-01 07:28:08 -07:00
8276d82f78 Move flags that do not work on MSVC (#18686)
Summary:
MSVC errors on these flags as they are not supported
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18686

Differential Revision: D14704254

Pulled By: ezyang

fbshipit-source-id: 936d33ed6b7474d7774a49505cdac50dbe8dd99a
2019-04-01 07:28:05 -07:00
44b5891121 Fix unused lambda capture warnings (#18662)
Summary:
```
aten/src/ATen/native/cpu/DistanceOpsKernel.cpp.DEFAULT.cpp:109:104: warning: lambda capture 'combs' is not used [-Wunused-lambda-capture]
    parallel_for(0, combs, internal::GRAIN_SIZE / (16 * m), [p, self_start, self_end, n, m, res_start, combs](int64_t k, int64_t end) {
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18662

Differential Revision: D14699379

Pulled By: bddppq

fbshipit-source-id: 5062d4327bb5f7b485c2ffa30c98e10576416f03
2019-03-31 22:35:58 -07:00
505d50ea90 handle a rare case of histogram min is inf/nan (#18239)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18239

When min is inf or nan, we get UBSAN errors

Reviewed By: csummersea

Differential Revision: D14537668

fbshipit-source-id: e70ffb5ecd2b10793356070c69fdabf8f25b203e
2019-03-31 21:32:54 -07:00
6841537933 Delete duplicated technical content from contribution_guide.rst (#18628)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18628
ghimport-source-id: d94b81a6f303883d97beaae25344fd591e13ce52

Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18629 Provide flake8 install instructions.
* **#18628 Delete duplicated technical content from contribution_guide.rst**

There's useful guide in contributing_guide.rst, but the
technical bits were straight up copy-pasted from CONTRIBUTING.md,
and I don't think it makes sense to break the CONTRIBUTING.md
link.  Instead, I deleted the duplicate bits and added a cross
reference to the rst document.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14701003

fbshipit-source-id: 3bbb102fae225cbda27628a59138bba769bfa288
2019-03-31 19:13:22 -07:00
35bc83524d Provide flake8 install instructions. (#18629)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18629
ghimport-source-id: 66a8871c56ffcfa7d4bfdf601e180fae99194e28

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18629 Provide flake8 install instructions.**
* #18628 Delete duplicated technical content from contribution_guide.rst

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14701004

fbshipit-source-id: b64292f0ef01b7894cf6b9ff8d5fd9e921c8d162
2019-03-31 18:59:18 -07:00
19fe2b9db4 Adding quantized tensor shape/type info support for caffe2=>glow in caffe2 side (#18621)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18621

This diff added caffe2 support for onnxifi quantization.

Reviewed By: yinghai

Differential Revision: D14648767

fbshipit-source-id: 4ddb492cacbba6142305866e6dbb875880acaea3
2019-03-31 17:42:27 -07:00
3c70326cf4 Fix test on windows (#18667)
Summary:
Breakage in #18188
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18667

Differential Revision: D14700133

Pulled By: driazati

fbshipit-source-id: 4cc26bd579fc1b074b3bef6046cc1030facee130
2019-03-31 16:24:21 -07:00
9c87543124 Enforce check ad in test_jit (#18509)
Summary:
If a test triggers autodiff, it must have a `DifferentiableGraph` in its differentiated forward graph, and this subgraph must have either the original aten node, or the corresponding nodes used in AD formula.

Typically a forward differentiable graph looks like this:
```
graph(%i0 : Float(),
      %i1 : Float()):
  %3 : Float() = prim::DifferentiableGraph_0(%i0, %i1)
  return (%3)
with prim::DifferentiableGraph_0 = graph(%0 : Float(),
      %1 : Float()):
  %2 : Float() = aten::max(%0, %1)
  return (%2)
```
which tells us `aten::max(Tensor self, Tensor other) -> Tensor` is symbolically differentiable.

Update: there're a lot of cases (fusions/ConstantChunk/python implementations) that breaks it so I decided to make the check optionally take node names if different from function name.
~~[OLD]Theoretically I could also check if `aten::max` is in the differentiable block or not to be more precise, but there're also cases like `chunk` where in a differentiable block it's replaced with a prim node (ConstantChunk) and we will have to special case them. Any suggestions here (to be more precise or no) is very welcome!~~

We used to have a list containing nn tests should be run against AD, I moved it to an field when constructing our test(either torch or nn). I think it's cleaner this way, and it matches the fact that for the same op we support one schema of it but not all, in this way we could just turn on the corresponding test which triggers that supported schema.

cc: apaszke zdevito wanchaol ngimel for a review

[Done] :
- Going through a manual second pass of all tests to check if they should enable AD test or not....
- Add a readme about how to add AD for an op and how to add/enable its test in test_jit.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18509

Differential Revision: D14696811

Pulled By: ailzhang

fbshipit-source-id: c5e693277baac585cd3aed5ab2c0e7faa5e6f29f
2019-03-31 08:51:30 -07:00
828a6a3b39 Use proper isnan check
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18663

Differential Revision: D14699385

Pulled By: bddppq

fbshipit-source-id: 596ad3371e7704802591e49f7e1c55dc6cd2896f
2019-03-31 02:08:11 -07:00
cb39bd9c2f pad_circular -> _pad_circular (#18608)
Summary:
pad_circular is really private, as circular padding is exposed via `F.pad`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18608

Differential Revision: D14691704

Pulled By: soumith

fbshipit-source-id: 8c2f90596feed670976115041efed3ca071e8306
2019-03-30 13:27:04 -07:00
a45b79d23f Fix wrap(at::Scalar) (#18632)
Summary:
Problem:
```cpp
// This function expects a `Variable` as input
inline PyObject* wrap(at::Tensor tensor) {
  return THPVariable_Wrap(Variable(std::move(tensor)));
}

inline PyObject* wrap(at::Scalar scalar) {
  // This function calls `wrap(at::Tensor tensor)` (the function above), but since
  // `scalar_to_tensor(...)` returns a `Tensor` and not a `Variable`, the call to
  // `wrap(at::Tensor tensor)` will fail with "Tensor that was converted to Variable
  // was not actually a Variable", which is not what we want.
  return wrap(scalar_to_tensor(scalar));
}
```

The right fix is to call `make_variable(...)` with the tensor returned from `scalar_to_tensor(scalar)`.

This unblocks https://github.com/pytorch/pytorch/pull/18230 as it is the only patch that hits this code path now. All other native functions that return Scalar (such as `item()` or `_local_scalar_dense()`) either has custom-defined implementation that doesn't go through this path, or is not exposed to Python at all.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18632

Differential Revision: D14689293

Pulled By: yf225

fbshipit-source-id: be7ba5d3de83a69533a2997de97ad92989ff78ee
2019-03-30 11:36:11 -07:00
0f6bf09db5 Deprecated type() -> scalar_type()
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18642

Differential Revision: D14696848

Pulled By: ezyang

fbshipit-source-id: 43d1f86ecee5f6c6c5b70fd7d0e2063c3fc473ab
2019-03-30 10:55:46 -07:00
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
96456bfa4c Update documentation for CTCLoss (#18415)
Summary:
This is meant to resolve #18249, where I pointed out a few things that could improve the CTCLoss docs.

My main goal was to clarify:
- Target sequences are sequences of class indices, excluding the blank index
- Lengths of `target` and `input` are needed for masking unequal length sequences, and do not necessarily = S, which is the length of the longest sequence in the batch.

I thought about Thomas's suggestion to link the distill.pub article, but I'm not sure about it. I think that should be up to y'all to decide.

I have no experience with .rst, so it might not render as expected :)

t-vi ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18415

Differential Revision: D14691969

Pulled By: soumith

fbshipit-source-id: 381a2d52307174661c58053ae9dfae6e40cbfd46
2019-03-30 01:26:34 -07:00
2a58fd9844 Fallback kernels (#18443)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18443

Allow registering a kernel without a dispatch key. In this case, the kernel becomes a fallback kernel that is called whenever no other kernel matches.
This is also useful for the legacy function based API (since that API doesn't know about dispatch keys) or any other custom ops that don't care about dispatch
and just want one kernel to be called no matter the dispatch key.

Reviewed By: dzhulgakov

Differential Revision: D14603258

fbshipit-source-id: 242dc8871dad2989ca25079854d0cc97429e7199
2019-03-30 00:07:34 -07:00
f4e87e193a Introduce lambda-based kernel API (#18541)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18541

Allow registering lambdas as c10 kernels.

Reviewed By: dzhulgakov

Differential Revision: D14653005

fbshipit-source-id: f867cc776b1339e83b7a2e1935f5cf924cfba44a
2019-03-30 00:07:31 -07:00
24752eb7b8 Report better errors when kernel or dispatch key are missing (#18302)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18302

These might be use cases we want to support in the future, but they don't work yet.
Let's at least report an error instead of doing segfaults or worse.

Reviewed By: dzhulgakov

Differential Revision: D14572346

fbshipit-source-id: 49262ce131493bc887defe2978d8b22f202cd8cc
2019-03-30 00:07:28 -07:00
48e7f98917 Move stuff to cpp files (#18301)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18301

Move code out of headers and templates into source files and non-templates.

Reviewed By: dzhulgakov

Differential Revision: D14572347

fbshipit-source-id: 9fd5d62d54000a95e93076cd73f591ba2c5c2653
2019-03-30 00:07:25 -07:00
14c28fabd2 Check kernel against function schema in c10 op registration (#18256)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18256

This diff infers the function schema from the kernel function/functor and checks that it matches the specified function schema.

This diff does not allow (yet) to omit specifying the function schema in the registration API. That will come in a future diff.

Reviewed By: dzhulgakov

Differential Revision: D14552738

fbshipit-source-id: 00202b489ede19f26ae686c97416b38c72c11532
2019-03-30 00:07:22 -07:00
c4bb09cc42 Add functor- and function-based kernel registration API (#18162)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18162

- Adds the API to register a functor- and function-based kernel.
- Change the experimental c10 ops to use this new API instead of the old one
- Deletes the old APIs in KernelRegistration.h and OpSchemaRegistration.h

Reviewed By: dzhulgakov

Differential Revision: D14514239

fbshipit-source-id: 35b2f6e8f62964e54886450a6a5fac812ed20f26
2019-03-30 00:07:19 -07:00
9abc8a5b47 New operator registration MVP (#18161)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18161

This introduces version 0 for the new operator registration.

For now, it only works with kernels that are defined as stack-based functions.
This is actually not the intended public API for defining kernels, but it's the basis which is going to be used to define the public APIs (see diffs on top for them),
and it's also the API used for exposing caffe2 operators.

This diff also switches the mechanism for exposing caffe2 operators to the new mechanism.

Reviewed By: dzhulgakov

Differential Revision: D14514231

fbshipit-source-id: 454ab7b5b46a10203aa27b175400d23f818dd1df
2019-03-30 00:07:16 -07:00
6095814229 Fix trt installation in CI (#18609)
Summary:
caffe2_py2_cuda9_0_cudnn7_ubuntu16_04_build is failing
```
...
Mar 29 04:44:46 Need to get 174 MB of archives.
Mar 29 04:44:46 After this operation, 576 MB of additional disk space will be used.
Mar 29 04:44:46 Do you want to continue? [Y/n] Abort.
Exited with code 1
...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18609

Differential Revision: D14694990

Pulled By: bddppq

fbshipit-source-id: 260446a8650f660a2baf123a3f17efdf0a8d6c64
2019-03-29 22:47:29 -07:00
24db1667da Attribute serialization improvements (#18188)
Summary:
* adds attributes to `ScriptModule.__getattr__` so they can be accessed in Python after re-importing
* full support for all the possible values for an `int64_t`
    * this necessitated a bunch more `pushWhatever` functions, so re-introduced a templated version to cut down on duplicate code
* tests to validate references / value sharing works
* adds `torch.jit.Unpickler` which people can use to de-serialize the pickle files into Python / have a quick reference on how to do this without PyTorch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18188

Differential Revision: D14527490

Pulled By: driazati

fbshipit-source-id: efd15579cc04aa2e28c4b2c9490d82d849dee559
2019-03-29 19:10:12 -07:00
e13101e069 support pre-convert filter format for mkldnn training mode and change 'OptimizeForIdeep' to 'OptimizeForMkldnn' (#15171)
Summary:
For MKL-DNN,the filter data will be reorderd to primitive format, it takes a lot of time.
So the patch provide a method to convert filter format before training.
And "OptimizeForIdeep" will be changed to "OptimizeForMkldnn" in this patch.
 This patch depends on https://github.com/pytorch/pytorch/pull/12866
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15171

Differential Revision: D14590741

Pulled By: yinghai

fbshipit-source-id: 07971c9977edac3c8eec08ca2c39cda639683492
2019-03-29 19:00:48 -07:00
d73c830e23 Tensor construction codemod(raw_mutable_data) (#16373)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16373

motivation: https://github.com/pytorch/pytorch/pull/12407
This is a manual diff.
most of the fixes should be:

```
auto* Y = Output(0);
Y->Resize(dims);
Y->raw_mutable_data(dtype);
```
-->
```
auto* Y = Output(0, dims, at::dtype(dtype));
```
But there might be other cases.

Reviewed By: dzhulgakov

Differential Revision: D13725460

fbshipit-source-id: 649a4b0e42f62cda1a60171dd9fa3e440dc9dca1
2019-03-29 18:36:46 -07:00
7b0ef31780 Add hash() global (#18258)
Summary:
This adds `hash()` which supports `int`, `str`, and `float`. It relies on `std::hash` which is implementation defined, so the result of `hash()` in TorchScript is not the same as in Python, but should satisfy the same properties.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18258

Differential Revision: D14692317

Pulled By: driazati

fbshipit-source-id: 909df5d024bb3feea157d5a203b7de53c72261c9
2019-03-29 18:29:34 -07:00
a5ddecd00c Move fuser to test_jit_fuser (#18590)
Summary:
Start of breaking up test_jit.py

New files will have the format test_jit_* so they are easily grepable but remain in the same directory so we don't have to go through multiple sources for imports.

I am adding a test that's expected to fail to be sure it's running.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18590

Reviewed By: wanchaol

Differential Revision: D14677094

Pulled By: eellison

fbshipit-source-id: 9782c6aa9525bb6f332fc75cfff004c83a417522
2019-03-29 18:13:26 -07:00
85f36014e2 Experimental logging/counters API (#18235)
Summary:
This defines a generic counters API that users can utilize to provide monitoring functionality in e.g. a production service. We expose both counters for runtime internals as well as a TorchScript API to create user-defined counters. Synopsis of the API:

- `torch/csrc/jit/script/logging.h` specifies the externally-facing API in C++
- `torch/jit/_logging.py` specifies the Python API

We use an interface, `LoggerBase`, to define the interactions between users and a logging backend. Implementing a subclass of `LoggerBase` allows the user to handle these events in a custom way, such as logging into a DB or calling into an infra-specific counters API.

From the frontend perspective, we can create log events in two ways:
1. We provide an `add_stat_value(name, val)` function. This calls into the Logger backend with a key/value pair. For example, we might call `add_stat_value('foo', 1)` to bump an event counter.
2. We provide a `time_point()` function to record a timestamp in nanoseconds. This can be used in conjunction with `add_stat_value` to record runtime wall clock durations.

Examples of frontend usage can be found in `test_jit.py TestLogging`.

We provide a trivial `LockingLogger` implementation as an example and for testing purposes. It is likely not ready for production usage. It demonstrates that a backend implementing the API can do things like specify aggregation types and report these aggregate stats via the `get_counters()` API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18235

Differential Revision: D14545060

Pulled By: jamesr66a

fbshipit-source-id: 04099543a1898cfdd411511e46e03d5dce9b4881
2019-03-29 17:14:03 -07:00
e2fd1d966f Revert D14668859: [pytorch][PR] Re-land Parsing file check
Differential Revision:
D14668859

Original commit changeset: 3825a35ddc61

fbshipit-source-id: f3343ec6b63fe8f1f04959adfac4331865990047
2019-03-29 17:14:00 -07:00
47e2772320 Update argument names of torch::autograd::FunctionPostHook (#18140)
Summary:
They are called as (outputs, inputs) and were named (inputs, outputs).

Possible follow up fix is to make the outputs argument an lvalue to allow for calling multiple post hooks without ever copying outputs vector. It looks like the copy is now forced because the hook takes a const reference as input and returns an value. This would change the prototype of the function, so needs further discussion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18140

Differential Revision: D14684498

Pulled By: pietern

fbshipit-source-id: 1bd3ddbdd1ff7fe0a18241de5a9ec745a4e7ef07
2019-03-29 16:30:23 -07:00
81b73951f1 note on updating existing source (#18409)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/18388
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18409

Differential Revision: D14597666

Pulled By: soumith

fbshipit-source-id: 156104c0cd19da06f6f96a225228d1e8cf831af1
2019-03-29 16:14:47 -07:00
393731ab24 Re-land Parsing file check (#18570)
Summary:
The last time I tried to land it there was a merge race with the docs coverage test lol. Re-landing with the fix.

Re-land of https://github.com/pytorch/pytorch/pull/18304
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18570

Differential Revision: D14668859

Pulled By: eellison

fbshipit-source-id: 3825a35ddc6179a0d433d70d22b5c1a96c20b21a
2019-03-29 15:46:59 -07:00
1240327c5c Refactoring serialization of ONNX initializers to be name-based (Resubmission) (#17830)
Summary:
houseroad - this is the resubmission of https://github.com/pytorch/pytorch/pull/17420, as suggested.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17830

Reviewed By: zrphercule

Differential Revision: D14398714

Pulled By: houseroad

fbshipit-source-id: bda475f1ae8a5273ebdb0f6883fc66036c29d326
2019-03-29 15:23:29 -07:00
fca9d9a100 Initial implementation of InsertObserverNodes pass. (#18152)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18152
ghimport-source-id: 1dd5e62c4d93394dcd8d8af2871554575c8d3d1a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18152 Initial implementation of InsertObserverNodes pass.**
* #18151 Add quant-passes stubs.

gh-metadata: pytorch pytorch 18150 gh/zolotukhinm@gmail.com/2/head

Differential Revision: D14584223

fbshipit-source-id: 30896acc1a8901d22c6a167eb87d2fbaafbbeb6f
2019-03-29 15:08:57 -07:00
84f020fe09 Fix bug in tensor feed which caused crash due to wrong tensor type (#18552)
Summary:
In blob feeder for ideep device, the wrong device option is given and led to a crash issue.
This patch aims to correct the device option to fix this bug.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18552

Differential Revision: D14679838

Pulled By: yinghai

fbshipit-source-id: bde11e6a6fe44822166881dcb7c9bd0b34b4ecf3
2019-03-29 14:12:36 -07:00
e3b1758f19 Upgrade mkldnn-bridge to revert tensor capacity patch and prepare for DNNLOWP support (#18471)
Summary:
1. Upgrade mkldnn-bridge to revert tensor capacity patch to avoid ASAN issue.
2. Prepare for DNNLOWP support.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18471

Differential Revision: D14621569

Pulled By: yinghai

fbshipit-source-id: 9df300b77d0f2acd1a4f63c2925b7a7cab7a474e
2019-03-29 13:54:04 -07:00
f4e35d30ed register BoxWithNMSLimit with C10
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17956

Reviewed By: houseroad

Differential Revision: D14417300

fbshipit-source-id: eb5e2ba84513b3b7bfa509dc442424b13fe9148f
2019-03-29 13:41:40 -07:00
d895d30876 Fix c10d build without nccl.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18582

Differential Revision: D14672928

Pulled By: gchanan

fbshipit-source-id: 74e9805cbaf5ebe8e3f579fe08dad72eb410b80a
2019-03-29 13:34:38 -07:00
6ebfbdf4c6 Add named submodule support to nn::Sequential (#17552)
Summary:
Previously, we were not able to assign names to `nn::Sequential`'s submodules. This PR adds this feature to match the Python API. Example use:
```cpp
Sequential sequential(named_submodule({
      {"linear", Linear(10, 3)},
      {"conv2d", Conv2d(1, 2, 3)},
      {"dropout", Dropout(0.5)},
      {"batchnorm", BatchNorm(5)},
      {"embedding", Embedding(4, 10)},
      {"lstm", LSTM(4, 5)}
}));
```

It also enables loading parameters of Python `nn.Sequential` module with custom submodules names into C++ frontend, unblocking https://github.com/pytorch/vision/pull/728#issuecomment-466661344.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17552

Differential Revision: D14246834

Pulled By: yf225

fbshipit-source-id: 3030b5c5d68f6dd5d3e37ac4b4f98dc6d6d9ba72
2019-03-29 13:06:29 -07:00
e73be58ff7 Rename btriunpack to lu_unpack (#18529)
Summary:
Changelog:
- Renames `btriunpack` to `lu_unpack` to remain consistent with the `lu` function interface.
- Rename all relevant tests, fix callsites
- Create a tentative alias for `lu_unpack` under the name `btriunpack` and add a deprecation warning to not promote usage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18529

Differential Revision: D14683161

Pulled By: soumith

fbshipit-source-id: 994287eaa15c50fd74c2f1c7646edfc61e8099b1
2019-03-29 13:01:30 -07:00
be2ac6828c fix lint (#18623)
Summary:
Fix lint
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18623

Differential Revision: D14686265

Pulled By: eellison

fbshipit-source-id: 4bbe0f5bc58f508cbf4bc1baef2029ce1eaa42d8
2019-03-29 11:50:12 -07:00
62d8c8cf0a Manual hipify caffe2/distributed and rocm update (no hcc modules support) (#18088)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18088

Manually hipify the distributed folder

Reviewed By: bddppq

Differential Revision: D14482702

fbshipit-source-id: cc0abdf525b423ab1f18db8010d21e27c6668d36
2019-03-29 11:07:32 -07:00
7c438c82eb Change dnnlowp log level from warning to v2 (#18576)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18576

As in title

Reviewed By: feiyu1990

Differential Revision: D14670898

fbshipit-source-id: 1983099b2ba57daab393278553f10dcdb1812fdf
2019-03-29 09:29:25 -07:00
c0a2452ffe multiline KeyError msg python bug workaround (#18557)
Summary:
make multiline KeyError msg readable by working around a python bug https://bugs.python.org/issue2651

discussion: https://github.com/pytorch/pytorch/issues/16647
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18557

Differential Revision: D14681086

Pulled By: soumith

fbshipit-source-id: acbd13a823302c854c3d364028ed414fd8ce6bc8
2019-03-29 07:04:20 -07:00
95d3825e48 ReduceLrOnPlateau: best=current -> best=copy(current) (#16364) (#16697)
Summary:
Fixes #16364
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16697

Differential Revision: D14680879

Pulled By: soumith

fbshipit-source-id: c50c22f3eacea4474fb3a04fe85fbf11d5a177c9
2019-03-29 06:56:51 -07:00
cf444f3544 make InstanceNorm1d raise an error if the input is 2D (#11992)
Summary:
Resolves #11991 .

Any comment is welcome.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11992

Differential Revision: D14680974

Pulled By: soumith

fbshipit-source-id: 8e287a9c32bf43b35edc9d127f16ed6b72c61d91
2019-03-29 06:50:04 -07:00
c189eba3e1 Fixed torch.arange docs (#18604)
Summary:
Kindly let me know if its okay and if any places i need to make a fix. Closes #18534
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18604

Differential Revision: D14680712

Pulled By: soumith

fbshipit-source-id: 030e4a3d8f7839cbe2b8a3ef386323f0d39eb81a
2019-03-29 06:42:28 -07:00
e22a2b9015 Minor fixes in fastrnns benchmarks
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/18613

Reviewed By: wanchaol

Differential Revision: D14681838

fbshipit-source-id: 60bd5c9b09398c74335f003cd21ea32dd1c45876
2019-03-29 01:22:28 -07:00