Commit Graph

71 Commits

Author SHA1 Message Date
cf35a591b9 Updated test_graph_optims and test_graph_scaling_fused_optimizers to use new OptimizerInfo infrastructure (#125127)
This PR is meant to address issue #123451, more specifically, the ```test_graph_optims``` and ```test_graph_scaling_fused_optimizers``` functions in ```test_cuda.py``` have been updated so that they now use the new OptimizerInfo infrastructure.

Lintrunner passed:
```
$ lintrunner test/test_cuda.py
ok No lint issues.
```
Tests passed:
```
>python test_cuda.py -k test_graph_optims
Ran 19 tests in 7.463s

OK (skipped=9)

>python test_cuda.py -k test_graph_scaling_fused_optimizers
Ran 6 tests in 2.800s

OK (skipped=3)
```
Both the functions have been moved to the newly created TestCase class ```TestCudaOptims```. The test is mostly the same except the ```@optims``` decorator is used at the top of the function to implicitly call the function using each of the optimizers mentioned in the decorator instead of explicitly using a for loop to iterate through each of the optimizers.

I was unable to use the ```_get_optim_inputs_including_global_cliquey_kwargs``` to get all kwargs for each of the optimizers since some of the kwargs that are used in the original ```test_graph_optims``` function are not being returned by the new OptimizerInfo infrastructure, more specifically, for the ```torch.optim.rmsprop.RMSprop``` optimizer, the following kwargs are not returned whenever ```_get_optim_inputs_including_global_cliquey_kwargs``` is called:
```
{'foreach': False, 'maximize': True, 'weight_decay': 0}
{ 'foreach': True, 'maximize': True, 'weight_decay': 0}
```
I ran into the same issue for ```test_graph_scaling_fused_optimizers```, for the ```torch.optim.adamw.AdamW``` optimizer, whenever ```optim_info.optim_inputs_func(device=device)``` was called, the following kwarg was not returned:
```
{'amsgrad': True}
```

Due to this issue, I resorted to using a dictionary to store the kwargs for each of the optimizers, I am aware that this is less than ideal. I was wondering whether I should use the OptimizerInfo infrastructure to get all the kwargs regardless of the fact that it lacks some kwargs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125127
Approved by: https://github.com/janeyx99
2024-05-20 06:20:45 +00:00
7e166e8057 [optim] Fix: wrong ASGD implementation (#126375)
This PR is based on #125440, additionally merging the latest main branch and fixing the lint failures from #126361.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126375
Approved by: https://github.com/janeyx99
2024-05-17 15:46:39 +00:00
e3c5d1b7d7 Revert "[optim] Fix: wrong ASGD implementation (#125440)"
This reverts commit 2c5ad9a3d7ea79ca897aec153a401f4b9175a717.

Reverted https://github.com/pytorch/pytorch/pull/125440 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it looks like there is a linter failure coming from this change ([comment](https://github.com/pytorch/pytorch/pull/125440#issuecomment-2113833108))
2024-05-16 02:12:29 +00:00
f9d107af66 [optim] add fused_adagrad support for CPU device (#124905)
Support fused_sgd_kernel support for CPU.

## Bench result:
32 core/sockets ICX
Test Scripts:
https://gist.github.com/zhuhaozhe/79e842e0a6e25d6d7fa1e4598807272c
https://gist.github.com/zhuhaozhe/b4c6998a509dcea1796dd05b3005c969
```
Tensor Size: 262144, Num Tensor 4, Num Threads: 1
_single_tensor_adagrad time: 0.2500 seconds
_fused_adagrad time: 0.0933 seconds
Tensor Size: 4194304, Num Tensor 32, Num Threads: 32
_single_tensor_adagrad time: 2.8819 seconds
_fused_adagrad time: 1.7591 seconds
```
## Test Plan:
```
python test_optim.py -k test_fused_matches_forloop
python test_optim.py -k test_fused_large_tensor
python test_optim.py -k test_can_load_older_state_dict
python test_optim.py -k test_grad_scaling_autocast_fused_optimizers
python test_torch.py -k test_grad_scaling_autocast_fused
python test_torch.py -k test_params_invalidated_with_grads_invalidated_between_unscale_and_step
```

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124905
Approved by: https://github.com/jgong5, https://github.com/janeyx99
2024-05-16 01:11:51 +00:00
2c5ad9a3d7 [optim] Fix: wrong ASGD implementation (#125440)
> previous: Originally, the variables `new_eta` and `new_mu` would be constructed `len(grouped_mus)` times, but each of their values is the same and won't be changed. Therefore, it can be simplified using Python list multiplication, which only constructs one tensor.

- [X] Ill assumption that every param will have the same step.
- [x] DIfferent implementation between `foreach=Ture` and `foreach=False`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125440
Approved by: https://github.com/janeyx99
2024-05-15 22:52:15 +00:00
bd3cbdba2f Revert "[optim] add fused_adagrad support for CPU device (#124905)"
This reverts commit 1c3fe8403365db3cc9b75524ae742e3027b745e2.

Reverted https://github.com/pytorch/pytorch/pull/124905 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing distributed multigpu test in trunk 1c3fe84033 ([comment](https://github.com/pytorch/pytorch/pull/124905#issuecomment-2108777063))
2024-05-13 20:53:22 +00:00
1c3fe84033 [optim] add fused_adagrad support for CPU device (#124905)
Support fused_sgd_kernel support for CPU.

## Bench result:
32 core/sockets ICX
Test Scripts:
https://gist.github.com/zhuhaozhe/79e842e0a6e25d6d7fa1e4598807272c
https://gist.github.com/zhuhaozhe/b4c6998a509dcea1796dd05b3005c969
```
Tensor Size: 262144, Num Tensor 4, Num Threads: 1
_single_tensor_adagrad time: 0.2500 seconds
_fused_adagrad time: 0.0933 seconds
Tensor Size: 4194304, Num Tensor 32, Num Threads: 32
_single_tensor_adagrad time: 2.8819 seconds
_fused_adagrad time: 1.7591 seconds
```
## Test Plan:
```
python test_optim.py -k test_fused_matches_forloop
python test_optim.py -k test_fused_large_tensor
python test_optim.py -k test_can_load_older_state_dict
python test_optim.py -k test_grad_scaling_autocast_fused_optimizers
python test_torch.py -k test_grad_scaling_autocast_fused
python test_torch.py -k test_params_invalidated_with_grads_invalidated_between_unscale_and_step
```

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124905
Approved by: https://github.com/jgong5, https://github.com/janeyx99
2024-05-13 01:16:20 +00:00
b24ad7eab5 Enable dynamo traced test_param_group_with_lrscheduler_goes_right_direction (#124544)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124544
Approved by: https://github.com/janeyx99
ghstack dependencies: #125825, #125826
2024-05-11 06:29:59 +00:00
e3d5afc60a Enable dynamo'd test for 116499 (#123469)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123469
Approved by: https://github.com/janeyx99
ghstack dependencies: #123619
2024-05-07 22:17:01 +00:00
f0c6d6100b Enable dynamo-traced optimizer peak memory tests (#124543)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124543
Approved by: https://github.com/yf225, https://github.com/janeyx99
2024-05-07 08:21:50 +00:00
787afc5180 Add LR as tensor tests (#123750)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123750
Approved by: https://github.com/janeyx99
2024-05-01 04:46:49 +00:00
3c964ad1ca add fused_sgd_kernel support for CPU device (#123629)
Support fused_sgd_kernel support for CPU.

## Bench result:
32 core/sockets ICX
Test Scripts:
https://gist.github.com/zhuhaozhe/688763e17e93e4c5e12f25f676ec90d9
https://gist.github.com/zhuhaozhe/ad9938694bc7fae8b66d376f4dffc6c9
```
Tensor Size: 262144, Num Tensor 4, Num Threads: 1
_single_tensor_sgd time: 0.2301 seconds
_fused_sgd time: 0.0925 seconds
Tensor Size: 4194304, Num Tensor 32, Num Threads: 32
_single_tensor_sgd time: 2.6195 seconds
_fused_sgd time: 1.7543 seconds
```
## Test Plan:
```
python test_optim.py -k test_fused_matches_forloop
python test_optim.py -k test_fused_large_tensor
python test_optim.py -k test_can_load_older_state_dict
python test_optim.py -k test_grad_scaling_autocast_fused_optimizers
python test_torch.py -k test_grad_scaling_autocast_fused
python test_torch.py -k test_params_invalidated_with_grads_invalidated_between_unscale_and_step
```
Looks like we already have some PRs under this issue https://github.com/pytorch/pytorch/issues/123451 to unified the UTs, I did not modified UT in this PR.

Co-authored-by: Jane Xu <janeyx@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123629
Approved by: https://github.com/jgong5, https://github.com/janeyx99
2024-04-23 08:28:19 +00:00
0d0b5b2655 Enable dynamo rosenbrock sparse tests (#124542)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124542
Approved by: https://github.com/yf225
ghstack dependencies: #124540, #124541
2024-04-20 05:54:41 +00:00
184f16016e Enable dynamo-traced deepcopy test for RMSprop (#124541)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124541
Approved by: https://github.com/yf225
ghstack dependencies: #124540
2024-04-20 05:54:41 +00:00
6a730698e2 Enable dynamo-traced Adamax tests (#124540)
Enabling tests related to https://github.com/pytorch/pytorch/issues/121178

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124540
Approved by: https://github.com/yf225
2024-04-20 05:54:41 +00:00
68a027f144 Fixes for 123400 (#123406)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123406
Approved by: https://github.com/janeyx99
ghstack dependencies: #123324, #123404, #123405, #124309
2024-04-19 17:20:57 +00:00
1531a29fb9 Enable tests related to 116061 (#123405)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123405
Approved by: https://github.com/janeyx99
ghstack dependencies: #123324, #123404
2024-04-19 17:20:54 +00:00
406d99e46c Fix for 117147 (#123404)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123404
Approved by: https://github.com/Skylion007, https://github.com/janeyx99
ghstack dependencies: #123324
2024-04-19 17:20:50 +00:00
203d111c54 Enable dynamo test_forloop_goes_right_direction_multi_gpu (#123324)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123324
Approved by: https://github.com/janeyx99
2024-04-19 17:20:41 +00:00
b412b75b42 [optim] add fused_adam/adamw_kernel support for CPU device (#123074)
On par with `CUDA` implementation.

For `autocast` logic, same with `CUDA` + `Fused Adam`:
 - check inf in `gradscalar.step`
 - In fused kernel, if there is `inf`, do nothing. If not, unscale the grad ( also write back) and update the param.

**TestPlan**:
```
# extend CUDA only test for CPU fused adagrad
python test_optim.py -k test_fused_matches_forloop
python test_optim.py -k test_fused_large_tensor
python test_torch.py -k test_grad_scaling_autocast_fused

# extend fused test
python test_torch.py -k test_params_invalidated_with_grads_invalidated_between_unscale_and_step
python test_optim.py -k test_can_load_older_state_dict

# newly added test (follow 6b1f13ea2f/test/test_cuda.py (L1108))
python test_optim.py -k test_grad_scaling_autocast_fused_optimizers
```

**Benchmark**:
**5.1x** on 56 core SPR
**Parameter-size=1M**
**Nparams=10**
[test script](https://gist.github.com/zhuhaozhe/ef9a290ad3f8f4067b3373a3bdaa33e7)

```
numactl -C 0-55 -m 0 python bench_adam.py
non-fused 6.0174267292022705 s
fused 1.1787631511688232 s
```

**Note: Fused kernel accuracy**
The accuracy failure in CI shows a little higher than default tolerance
```
2024-04-02T06:09:16.2213887Z Mismatched elements: 21 / 64 (32.8%)
2024-04-02T06:09:16.2214339Z Greatest absolute difference: 1.5735626220703125e-05 at index (6, 6) (up to 1e-05 allowed)
2024-04-02T06:09:16.2214813Z Greatest relative difference: 1.0073336852656212e-05 at index (4, 1) (up to 1.3e-06 allowed)
```
I have debug it step by step and unfortunately we may not able to make the `fused kernel` exactly same with `non fused` one due to compiler optimizations.
For example, in non-fused impl
```
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
```
and in fused impl
```
  exp_avg_sq_ptr[d] = scalar_t(beta2) * exp_avg_sq_ptr[d];
  //  std::cout << "exp_avg_sq " <<   exp_avg_sq_ptr[d] << std::endl;
  exp_avg_sq_ptr[d] = exp_avg_sq_ptr[d] +
      scalar_t(exp_avg_sq_grad_coefficient) * grad_val * grad_val;
```
If I keep `std::cout`, I can get exactly same results in UT
```
===============param
0.6796758770942688
0.6796758770942688
```
But when I comment out it, there will be a difference
```
===============param
0.6796758770942688
0.6796759366989136
```
So I will make the tolerance a little higher than default one.

Co-authored-by: Jane Xu <janeyx@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123074
Approved by: https://github.com/jgong5, https://github.com/janeyx99
2024-04-19 11:14:04 +00:00
102a223216 Enable dynamo test_state_dict_deterministic (#123323)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123323
Approved by: https://github.com/janeyx99
ghstack dependencies: #123498, #123322
2024-04-18 01:06:28 +00:00
d88fcb86d8 Enable dynamo traced test_forloop_goes_right_direction (#123322)
Removed a bunch of skips, I also updated test_forloop_goes_right_direction to *not* use the closure when dynamo is tracing. The reason for this is that testing the disabled optimizer doesn't actually test anything.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123322
Approved by: https://github.com/janeyx99
ghstack dependencies: #123498
2024-04-18 00:50:10 +00:00
565e8c0645 [Reland] Enable dynamo'd tests disabled for #115679 (#123552)
Relanding https://github.com/pytorch/pytorch/pull/123315

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123552
Approved by: https://github.com/anijain2305
ghstack dependencies: #123496, #123497, #123551
2024-04-09 02:14:32 +00:00
6951626735 [Reland] Enable tests disabled for #115607 (#123551)
Relanding https://github.com/pytorch/pytorch/pull/123314

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123551
Approved by: https://github.com/anijain2305
ghstack dependencies: #123496, #123497
2024-04-08 21:29:28 +00:00
e94b81b254 Revert "Enable tests disabled for #115607 (#123314)"
This reverts commit 9564e204c1616ce78434abfdea0f3fd428b675f3.

Reverted https://github.com/pytorch/pytorch/pull/123314 on behalf of https://github.com/atalman due to  break TestOptimRenewedCPU::test_foreach_matches_forloop_Adamax_cpu_float64 ([comment](https://github.com/pytorch/pytorch/pull/123314#issuecomment-2040854499))
2024-04-06 01:59:22 +00:00
954d750516 Revert "Enable dynamo'd tests disabled for #115679 (#123315)"
This reverts commit d472ebf94a3f3a3dec31e9d8b2038127b2309727.

Reverted https://github.com/pytorch/pytorch/pull/123315 on behalf of https://github.com/atalman due to break TestOptimRenewedCPU::test_foreach_matches_forloop_Adamax_cpu_float64 ([comment](https://github.com/pytorch/pytorch/pull/123315#issuecomment-2040835229))
2024-04-06 00:57:42 +00:00
d472ebf94a Enable dynamo'd tests disabled for #115679 (#123315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123315
Approved by: https://github.com/janeyx99
ghstack dependencies: #123313, #123314
2024-04-05 23:21:53 +00:00
9564e204c1 Enable tests disabled for #115607 (#123314)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123314
Approved by: https://github.com/janeyx99
ghstack dependencies: #123313
2024-04-05 23:21:53 +00:00
d7fe0603a1 Move sparse tests to TestOptimRenewed (#123146)
This is the last of the old TestOptim! With this change, everything will be migrated to use OptimizerInfo. Our sparse support is...well, sparse, and the tests try to best encapsulate which configs actually work. Note that support_sparse is actually just supports sparse grads...we don't test sparse params.

1. This PR fixes a bug in Adagrad multi_tensor with maximize by passing the correct value of maximize (vs False everytime) when sparse values are present.

2. This PR does improve coverage. There used to only be 2 configs each, and now we have the following configs for:

Adagrad:
```
python test/test_optim.py -k test_rosenbrock_sparse_with_lrsched_False_Adagrad
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
{'maximize': True, 'lr': 0.1}
{'initial_accumulator_value': 0.1, 'lr': 0.1}    <--- this and above are CPU
.{'foreach': False, 'lr': 0.1}
{'foreach': True, 'lr': 0.1}
{'maximize': True, 'foreach': False, 'lr': 0.1}
{'maximize': True, 'foreach': True, 'lr': 0.1}
{'initial_accumulator_value': 0.1, 'foreach': False, 'lr': 0.1}
{'initial_accumulator_value': 0.1, 'foreach': True, 'lr': 0.1}
.
----------------------------------------------------------------------
Ran 2 tests in 227.744s

OK
```

SGD
```
(pytorch-3.10) [janeyx@devgpu023.odn1 /data/users/janeyx/pytorch (bff23193)]$ python test/test_optim.py -k test_rosenbrock_sparse_with_lrsched_False_SGD
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
{'dampening': 0.5, 'lr': 0.0048}
.{'foreach': False, 'lr': 0.0048}
{'foreach': True, 'lr': 0.0048}
{'dampening': 0.5, 'foreach': False, 'lr': 0.0048}
{'dampening': 0.5, 'foreach': True, 'lr': 0.0048}
.
----------------------------------------------------------------------
Ran 2 tests in 112.801s

OK
```

SparseAdam
```
(pytorch-3.10) [janeyx@devgpu023.odn1 /data/users/janeyx/pytorch (bff23193)]$ python test/test_optim.py -k test_rosenbrock_sparse_with_lrsched_False_Sparse
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
{'maximize': True, 'lr': 0.04}
.{'maximize': True, 'lr': 0.04}
.
----------------------------------------------------------------------
Ran 2 tests in 35.113s

OK
```

Fixes #103322. A side quest in this migration was to re-enable and track dynamo issues as they trigger on the optim tests, which will be complete from this PR. New tests may add more things to track in dynamo, but there is now an established system for doing so, and dynamo is either enabled or a bug is tracked for every migrated test in TestOptimRenewed.

Next steps:
Remove the hyperparameter constraints in common_optimizer.py defined by metadata_for_sparse (other than LR, which seems handpicked for the tests to actually pass). Doing this requires adding more sparse functionality.

Add more tests!

Maybe add more optimizers!

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123146
Approved by: https://github.com/albanD
ghstack dependencies: #123134, #123139
2024-04-02 22:51:02 +00:00
f2838c99a0 Add a tensor lr test for optimizers (#123139)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123139
Approved by: https://github.com/albanD
ghstack dependencies: #123134
2024-04-02 22:51:02 +00:00
cb8fc30e4a Move LRScheduler integration tests to OptimizerInfo (#123134)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123134
Approved by: https://github.com/albanD
2024-04-02 22:51:02 +00:00
9d9d2af786 [BE] Move tests using functional API to OptimizerInfo (#122822)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122822
Approved by: https://github.com/albanD
2024-04-02 01:35:59 +00:00
16771747c2 Add tensor step and capturable support to rprop (#122261)
Towards fixing https://github.com/pytorch/pytorch/issues/115679
Fixes Rprop step update while compiling

Also adds capturable support + testing

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122261
Approved by: https://github.com/janeyx99
2024-03-28 23:31:18 +00:00
caa57e4fcd Add tensor step and capturable support to rmsprop (#122264)
Towards fixing https://github.com/pytorch/pytorch/issues/115679
Fixes RMSprop step update while compiling

Adds capturable support to RMSprop

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122264
Approved by: https://github.com/janeyx99
2024-03-28 03:39:28 +00:00
365e89a591 Add tensor step to adadelta (#122252)
Towards fixing https://github.com/pytorch/pytorch/issues/115679
Fixes Adadelta step update while compiling

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122252
Approved by: https://github.com/janeyx99
2024-03-21 07:28:47 +00:00
fb1d7935bb [optim][BE] move complex_2d (last of complex tests) to OptimInfo (#120618)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120618
Approved by: https://github.com/albanD
2024-03-12 02:33:21 +00:00
f76e541ec7 [BE] NO MORE discrepancy between forloop foreach capturable YAY (#121269)
and I will not let it happen again

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121269
Approved by: https://github.com/albanD
ghstack dependencies: #121260, #121264
2024-03-08 00:00:30 +00:00
9d6c5be781 Add ASGD capturable API for forloop (#121264)
@tfsingh I got to it first--wanted to land this stack and close the gap ASAP.

This PR also fixes a discrepancy between `_init_group` and `__set_state__` because we have the constants live on params' device always.

There are some next steps though:
- ASGD can be made faster by making etas, mus, steps be on CPU when NOT capturable. (I had mistakenly thought foreachifying was faster and so we landed https://github.com/pytorch/pytorch/pull/107857, but it is slower). No one has complained yet though.  ¯\_(ツ)_/¯

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121264
Approved by: https://github.com/albanD
ghstack dependencies: #121260
2024-03-08 00:00:30 +00:00
24821fec26 Add RAdam capturable API for forloop (#121260)
Implementation thanks to @MarouaneMaatouk in https://github.com/pytorch/pytorch/pull/118697, though I've since cleaned it up a lot to save perf on the rect < 5 eager case. It also just looks better now :) Added tests and the cudagraph health check.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121260
Approved by: https://github.com/mlazos
2024-03-08 00:00:30 +00:00
83d095c213 [BE] Remove unnecessary requires_cuda in common_optimizers.py (#121249)
@mlazos had already added the needed decorator on the test itself.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121249
Approved by: https://github.com/Skylion007, https://github.com/mlazos, https://github.com/albanD
ghstack dependencies: #121183
2024-03-07 17:57:02 +00:00
53bdae736d Add capturable single tensor Adamax (#121183)
Finishes the work started in https://github.com/pytorch/pytorch/pull/118697. Thanks @MarouaneMaatouk for the attempt, but due to inactivity I have opened this PR for Adamax. Note that the new capturable implementation is much simpler and I've modified the foreach capturable impl--it now calls fewer kernels and is more easily comparable to forloop.

Next steps:
* This PR discovered two bugs: #121178 and #121238.
* Move the now hefty graph optim tests in test_cuda to use OptimInfo.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121183
Approved by: https://github.com/albanD
2024-03-07 17:57:02 +00:00
d621e3e3b8 Add exhaustive module and optimizer tests for torch.load(state_dict, weights_only=True) (#121049)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121049
Approved by: https://github.com/janeyx99
2024-03-05 14:27:50 +00:00
f9f602fcb8 Clean up decorators (#119925)
as title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119925
Approved by: https://github.com/eellison
2024-02-15 22:51:53 +00:00
9f44274373 Add tests to verify disabled optimizers (#118919)
As title

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118919
Approved by: https://github.com/janeyx99
2024-02-14 07:45:16 +00:00
3625ccfbea Move step global hooks test to OptimizerInfo (#119299)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119299
Approved by: https://github.com/mikaylagawarecki
ghstack dependencies: #119283, #119288
2024-02-07 15:50:31 +00:00
7b3762e6bc Move step pre/post hook tests to OptimizerInfo (#119288)
Note that this increases coverage from 1 config (vanilla SGD) to all the configs (13 optimizers at around 6-7 each). The test time seems fine though!

With the torch cuda synchronization:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (b6093c03)]$ python test/test_optim.py -k test_step_pre_hook -k test_step_post_hook
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
....................................................
----------------------------------------------------------------------
Ran 52 tests in 13.680s

OK
```

Excluding the torch cuda synchronization:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (916f6fe3)]$ python test/test_optim.py -k test_step_pre_hook -k test_step_post_hook
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
....................................................
----------------------------------------------------------------------
Ran 52 tests in 1.038s

OK
```

The old tests:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (916f6fe3)]$ python test/test_optim.py -k test_pre_hook -k test_post_hook
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
..
----------------------------------------------------------------------
Ran 2 tests in 0.518s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119288
Approved by: https://github.com/mikaylagawarecki
ghstack dependencies: #119283
2024-02-07 15:50:31 +00:00
b5ba80828f [optim] Rectify capturable testing and fix bugs! (#118326)
This PR fixes several bugs, listed in priority:
1. `load_state_dict` with a nontensor step was incorrect for capturable and fused implementations since we don't create the tensors on the right device in `__setstate__`. This has been fixed.
2. The most recently added capturable implementations forgot the check that all tensors should be on CUDA for eager. We've now added those checks
3. The most recent change in Adamax only adds capturable for foreach but will silently be incorrect for forloop/single-tensor. I've added erroring and modified testing with many many many skips for that. Honestly my preference after this PR has only been further cemented  that we should just do the single tensor and multi tensor capturable implementations together in the future. @mlazos
4. The conditional for adding cuda-supported configs for the optimizer infos was incorrect! So we hadn't been testing capturable! This also stands rectified and was the trigger for this PR in the first place.
5. In a similar way, the conditional for `_get_optim_inputs_including_global_cliquey_kwargs` was incorrect sometimes as well. This has also been corrected.

The following is not a bug, but is just something to make life simpler by not needing to handle Nones: `optim_input_funcs` must now mandatorily take in a `device`, which could be a string or a torch.device.

Details for posterity:
4. Running the test_foreach_matches_forloop test and printing the configs that get printed yields capturable getting included, which is correct.
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5d50138f)]$ python test/test_optim.py -k test_foreach_matches_forloop_AdamW_cuda
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={}, desc=default
params=None, kwargs={'lr': 0.01}, desc=non-default lr
params=None, kwargs={'weight_decay': 0.1}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'maximize': True}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True}, desc=amsgrad
params=None, kwargs={'capturable': True}, desc=capturable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True}, desc=capturable, amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True}, desc=Tensor lr with capturable and amsgrad
.
----------------------------------------------------------------------
Ran 1 test in 19.229s

OK
```
5. Running the test_optimizer_can_be_printed test (which calls `_get_optim_inputs_including_global_cliquey_kwargs`) and printing what gets run is also now correct.
```
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={'differentiable': False}, desc=default
params=None, kwargs={'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.1, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': True}, desc=amsgrad & differentiable
.params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable
params=None, kwargs={'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable & foreach
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable & differentiable
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable, amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable, amsgrad & fused
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad & foreach
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=Tensor lr with capturable and amsgrad & differentiable
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=Tensor lr with capturable and amsgrad & fused
.
----------------------------------------------------------------------
Ran 2 tests in 11.112s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118326
Approved by: https://github.com/mlazos
2024-02-02 19:13:00 +00:00
2964170f3a Revert "[optim] Rectify capturable testing and fix bugs! (#118326)"
This reverts commit d947b9d50011ebd75db2e90d86644a19c4fe6234.

Reverted https://github.com/pytorch/pytorch/pull/118326 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it looks like there are some relevant failures in trunk d947b9d500, may be a land race ([comment](https://github.com/pytorch/pytorch/pull/118326#issuecomment-1923125676))
2024-02-02 07:08:14 +00:00
d947b9d500 [optim] Rectify capturable testing and fix bugs! (#118326)
This PR fixes several bugs, listed in priority:
1. `load_state_dict` with a nontensor step was incorrect for capturable and fused implementations since we don't create the tensors on the right device in `__setstate__`. This has been fixed.
2. The most recently added capturable implementations forgot the check that all tensors should be on CUDA for eager. We've now added those checks
3. The most recent change in Adamax only adds capturable for foreach but will silently be incorrect for forloop/single-tensor. I've added erroring and modified testing with many many many skips for that. Honestly my preference after this PR has only been further cemented  that we should just do the single tensor and multi tensor capturable implementations together in the future. @mlazos
4. The conditional for adding cuda-supported configs for the optimizer infos was incorrect! So we hadn't been testing capturable! This also stands rectified and was the trigger for this PR in the first place.
5. In a similar way, the conditional for `_get_optim_inputs_including_global_cliquey_kwargs` was incorrect sometimes as well. This has also been corrected.

The following is not a bug, but is just something to make life simpler by not needing to handle Nones: `optim_input_funcs` must now mandatorily take in a `device`, which could be a string or a torch.device.

Details for posterity:
4. Running the test_foreach_matches_forloop test and printing the configs that get printed yields capturable getting included, which is correct.
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (5d50138f)]$ python test/test_optim.py -k test_foreach_matches_forloop_AdamW_cuda
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/transformers/utils/generic.py:441: UserWarning: torch.utils._pytree._register_pytree_node is deprecated. Please use torch.utils._pytree.register_pytree_node instead.
  _torch_pytree._register_pytree_node(
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={}, desc=default
params=None, kwargs={'lr': 0.01}, desc=non-default lr
params=None, kwargs={'weight_decay': 0.1}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'maximize': True}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True}, desc=amsgrad
params=None, kwargs={'capturable': True}, desc=capturable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True}, desc=capturable, amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True}, desc=Tensor lr with capturable and amsgrad
.
----------------------------------------------------------------------
Ran 1 test in 19.229s

OK
```
5. Running the test_optimizer_can_be_printed test (which calls `_get_optim_inputs_including_global_cliquey_kwargs`) and printing what gets run is also now correct.
```
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
params=None, kwargs={'differentiable': False}, desc=default
params=None, kwargs={'differentiable': True}, desc=default & differentiable
params=None, kwargs={'lr': 0.01, 'differentiable': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'differentiable': True}, desc=non-default lr & differentiable
params=None, kwargs={'weight_decay': 0.1, 'differentiable': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'differentiable': True}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'differentiable': True}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'differentiable': True}, desc=amsgrad & differentiable
.params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': False}, desc=default
params=None, kwargs={'foreach': True, 'differentiable': False, 'fused': False}, desc=default & foreach
params=None, kwargs={'foreach': False, 'differentiable': True, 'fused': False}, desc=default & differentiable
params=None, kwargs={'foreach': False, 'differentiable': False, 'fused': True}, desc=default & fused
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': False}, desc=non-default lr
params=None, kwargs={'lr': 0.01, 'foreach': True, 'differentiable': False, 'fused': False}, desc=non-default lr & foreach
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': True, 'fused': False}, desc=non-default lr & differentiable
params=None, kwargs={'lr': 0.01, 'foreach': False, 'differentiable': False, 'fused': True}, desc=non-default lr & fused
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay
params=None, kwargs={'weight_decay': 0.1, 'foreach': True, 'differentiable': False, 'fused': False}, desc=nonzero weight_decay & foreach
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': True, 'fused': False}, desc=nonzero weight_decay & differentiable
params=None, kwargs={'weight_decay': 0.1, 'foreach': False, 'differentiable': False, 'fused': True}, desc=nonzero weight_decay & fused
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=maximize
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=maximize & foreach
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=maximize & differentiable
params=None, kwargs={'weight_decay': 0.1, 'maximize': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=maximize & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=amsgrad & fused
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable
params=None, kwargs={'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable & foreach
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable & differentiable
params=None, kwargs={'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable & fused
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=capturable, amsgrad & foreach
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=capturable, amsgrad & differentiable
params=None, kwargs={'weight_decay': 0.1, 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=capturable, amsgrad & fused
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': True, 'differentiable': False, 'fused': False}, desc=Tensor lr with capturable and amsgrad & foreach
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': True, 'fused': False}, desc=Tensor lr with capturable and amsgrad & differentiable
params=None, kwargs={'lr': tensor(0.0010), 'amsgrad': True, 'capturable': True, 'foreach': False, 'differentiable': False, 'fused': True}, desc=Tensor lr with capturable and amsgrad & fused
.
----------------------------------------------------------------------
Ran 2 tests in 11.112s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118326
Approved by: https://github.com/mlazos
2024-02-02 02:02:58 +00:00
aca41a3a74 [optim] lbfgs: handle complex params as independent real params (#118184)
Ref: #86340

Fixes #118148

This fixes LBFGS for complex parameters. Complex parameters are handled as R^2.
I also added a test, unfortunately, due to the closure required, I could not use the existing `_test_complex_optimizer` used for all other optimizers.
Lbfgs is special, as it will call the objective function multiple times internally. So I felt making a one-off test for lbfgs might be justifiable.
We will test if each step taken internally by the optimizer is the same for R^2 and complex parameters.

Let me know if the approach is ok, thanks

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118184
Approved by: https://github.com/janeyx99
2024-01-31 19:24:16 +00:00