Fixes#115331.
This PR increases the number of valid GPU devices to 512 (from 64) in order to future-proof PyTorch for providers that offer [single nodes with a large device count](https://www.tensorwave.com/). Until now, `DeviceIndex` was an `int8_t`, thus multiple changes were necessary:
- `DeviceIndex` changed to `int16_t`. Updated consumers that assume it to be an `int8_t`.
- Updated bounds checking for `torch.device()` in the Python frontend. Right now, we allow funny things like `torch.device('cpu', 200).index == -56`, which is undefined behavior. I inserted some checks to only allow values between 0 and `c10::Device::MAX_NUM_DEVICES - 1`.
- Updated the `ArgumentInfo` struct as it hardcodes the device index as 8 bit field [^1]. Might be a breaking change, not sure if users rely on this.
- Introduced `c10::Device::MAX_NUM_DEVICES` as a replacement for the old `C10_COMPILE_TIME_MAX_GPUS`
[^1]: This field was unsigned, so I guess this has also been undef behavior the whole time? Our default device index is -1, so this always wrapped around to 255 when written to the `ArgumentInfo` struct. When I switched the `DeviceIndex` to `int16_t`, it actually stayed 255 after unpacking from `ArgumentInfo` again, as the `DeviceIndex` was now wide enough that it didn't wrap back to -1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119639
Approved by: https://github.com/cyyever, https://github.com/albanD, https://github.com/huydhn
# Motivation
As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the next runtime component we would like to upstream is `Event` which handles the status of an operation that is being executed. Typically, in some circumstances, we can fine-grain control of the operation execution via `Event`.
# Design
`XPUEvent` is a movable but not a copyable wrapper around sycl event. It should be created lazily on an XPU device when recording an `XPUStream`. Meanwhile, `XPUEvent` can wait for another `XPUEvent` or all the submitted kernels on an `XPUStream` to complete. Align to the other backend, the C++ files related to `Event` will be placed in `aten/src/ATen/xpu` folder. For frontend code, `XPUEvent` runtime API will be bound to Python `torch.xpu.Event`. The corresponding C++ code will be placed in `torch/csrc/xpu/Event.cpp` and Python code will be placed in `torch/xpu/streams.py` respectively.
# Additional Context
It is worth mentioning that the `elapsed_time` method is temporarily not supported by `XPUEvent`. We will be adding support for it soon. Meanwhile `XPUEvent` doesn't support IPC from different processes. For the other parts, we have almost a 1:1 mapping with CUDA.
lack of the below APIs:
- `torch.cuda.Event.ipc_handle`
- `CUDAEvent`'s constructor with `IpcEventHandle`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117734
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/jgong5, https://github.com/malfet
ghstack dependencies: #117611, #117619
# Motivation
According to [[1/2] Intel GPU Runtime Upstreaming for Stream](https://github.com/pytorch/pytorch/pull/117611), as mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), the second PR covers the changes under `python frontend`.
# Design
Currently, it primarily offers stream-related APIs, including
- `torch.xpu.StreamContext`
- `torch.xpu.current_stream`
- `torch.xpu.set_stream`
- `torch.xpu.synchronize`
- `torch._C._xpu_getCurrentRawStream`
# Additional Context
We will implement functions like `torch.xpu.Stream.wait_event`, `torch.xpu.Stream.wait_stream`, and `torch.xpu.Stream.record_event` in the next PR related with `Event`.
The differences with CUDA:
no default and external stream in XPU and lack of below APIs:
- `torch.cuda.ExternalStream`
- `torch.cuda.default_stream`
- `toch.cuda.is_current_stream_capturing`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117619
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/albanD
ghstack dependencies: #117611
# Motivation
According to [[1/4] Intel GPU Runtime Upstreaming for Device](https://github.com/pytorch/pytorch/pull/116019), As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), this third PR covers the changes under `libtorch_python`.
# Design
This PR primarily offers device-related APIs in python frontend, including
- `torch.xpu.is_available`
- `torch.xpu.device_count`
- `torch.xpu.current_device`
- `torch.xpu.set_device`
- `torch.xpu.device`
- `torch.xpu.device_of`
- `torch.xpu.get_device_name`
- `torch.xpu.get_device_capability`
- `torch.xpu.get_device_properties`
- ====================
- `torch.xpu._DeviceGuard`
- `torch.xpu._is_compiled`
- `torch.xpu._get_device`
# Additional Context
We will implement the support of lazy initialization in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116850
Approved by: https://github.com/EikanWang, https://github.com/jgong5, https://github.com/gujinghui, https://github.com/malfet
# Summary
Simplification of Backend Selection
This PR deprecates the `torch.backends/cuda/sdp_kernel` context manager and replaces it with a new context manager `torch.nn.attention.sdpa_kernel`. This context manager also changes the api for this context manager.
For `sdp_kernel` one would specify the backend choice by taking the negation of what kernel they would like to run. The purpose of this backend manager was to only to be a debugging tool, "turn off the math backend" and see if you can run one of the fused implementations.
Problems:
- This pattern makes sense if majority of users don't care to know anything about the backends that can be run. However, if users are seeking to use this context manager then they are explicitly trying to run a specific backend.
- This is not scalable. We are working on adding the cudnn backend and this API makes it so so that more implementations will need to be turned off if user wants to explicitly run a given backend.
- Discoverability of the current context manager. It is somewhat un-intutive that this backend manager is in backends/cuda/init when this now also controls the CPU fused kernel behavior. I think centralizing to attention namespace will be helpful.
Other concerns:
- Typically backends (kernels) for operators are entirely hidden from users and implementation details of the framework. We have exposed this to users already, albeit not by default and with beta warnings. Does making backends choices even more explicit lead to problems when we potentially want to remove existing backends, (perhaps inputs shapes will get covered by newer backends).
A nice side effect is now that we aren't using the `BACKEND_MAP` in test_transformers many, many dynamo failures are passing for CPU tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114689
Approved by: https://github.com/cpuhrsch
This PR intends to fix the following issue when swapping two tensors
```python
>>> import torch
>>> torch.manual_seed(5)
>>> t1 = torch.randn(2)
>>> t2 = torch.randn(3)
>>> t1
tensor([-0.4868, -0.6038])
>>> t2
tensor([-0.5581, 0.6675, -0.1974])
>>> torch.utils.swap_tensors(t1, t2)
>>> t1
tensor([-0.5581, 0.6675, -0.1974])
>>> t2
tensor([-0.4868, -0.6038])
>>> t1.fill_(0.5) # t1 back to its unswapped state :o
tensor([-0.4868, -0.6038])
```
What happens here is that in `THPVariable_Wrap` (which is used when going back from C++ --> Python), we check if the TensorImpl of the tensor to be returned already has a pointer to a PyObject in its PyObject slot. If this is the case then this object is returned.
57491d2046/torch/csrc/autograd/python_variable.cpp (L271-L292)
When we run any operation that returns the same TensorImpl (e.g. inplace op, `t.to(dtype=t.dtype)`, etc.), although `t1` now has `t2`'s TensorImpl, `t2`'s TensorImpl still has a reference to `t2`, so when we do the op on `t1` and `THPVariable_Wrap` attempts to return the pointer to the TensorImpl's PyObject, we return a pointer to `t2` instead.
The TensorImpl should have the PyObjects in their PyObjectSlots swapped as well in `swap_tensors`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116955
Approved by: https://github.com/albanD
Summary: Now we can allocate an AOTIModelContainerRunner object instead of relying on torch.utils.cpp_extension.load_inline. Also renamed AOTInductorModelRunner to AOTIRunnerUtil in this PR.
Test Plan: CI
Reviewed By: khabinov
Differential Revision: D52339116
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116269
Approved by: https://github.com/khabinov
When exporting a model with a convolution kernel on cpu, if mkldnn is disabled and nnpack is enabled, export will go down the nnpack optimized convolution kernel for certain shapes ((code pointer)[cd449e260c/aten/src/ATen/native/Convolution.cpp (L542-L552)]). This means that we will automatically create a guard on that certain shape. If users want to export without any restrictions, one option is to disable nnpack. However, no config function exists for this, so this PR is adding a config function, similar to the `set_mkldnn_enabled` function.
Original context is in https://fb.workplace.com/groups/1075192433118967/posts/1349589822345892/?comment_id=1349597102345164&reply_comment_id=1349677642337110.
To test the flag, the following script runs successfully:
```
import os
import torch
from torchvision.models import ResNet18_Weights, resnet18
torch.set_float32_matmul_precision("high")
model = resnet18(weights=ResNet18_Weights.DEFAULT)
model.eval()
with torch.no_grad():
# device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.mkldnn.set_flags(False)
torch.backends.nnpack.set_flags(False) # <--- Added config
device = "cpu"
model = model.to(device=device)
example_inputs = (torch.randn(2, 3, 224, 224, device=device),)
batch_dim = torch.export.Dim("batch", min=2, max=32)
so_path = torch._export.aot_compile(
model,
example_inputs,
# Specify the first dimension of the input x as dynamic
dynamic_shapes={"x": {0: batch_dim}},
# Specify the generated shared library path
options={
"aot_inductor.output_path": os.path.join(os.getcwd(), "resnet18_pt2.so"),
"max_autotune": True,
},
)
```
I'm not sure who to add as reviewer, so please feel free to add whoever is relevant!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116152
Approved by: https://github.com/malfet
Fixes#50051.
This PR is based on #50320 and I address the last feedback.
On Windows it is enabled by default. Can be enabled or disabled via USE_CUSTOM_TERMINATE env variable.
This PR adds support for overriding the terminate handler in order to log uncaught exceptions in the threads.
If an exception is thrown and not caught, it will print <Unhandled exception caught in c10/util/AbortHandler.h>
The point of doing this is that in issue #50051, exceptions were thrown but not logged. With this logging system it will be easier to debug it in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101332
Approved by: https://github.com/albanD, https://github.com/malfet
This PR is proposing a new approach to solve the nn/optim only linked by python object identity problem.
The idea is to have a function that can swap the content of two Tensors t1 and t2 while preserving all the old references.
This would allow us to swap the `model.weight` with a new Tensor (can be any subclass of Tensor and any TensorImpl (xla, sparse, nested tensorimpl would work)). The use within nn will be done in a follow up.
This is done by swapping the whole content of the PyObject and then putting back the fields associated with external references (refcount, gc tracking and weakrefs).
Note that we have to properly handle all the cases where there is memory used before the public pointer PyObject* and where the PyObject is bigger due to dict/weakref being inlined (older CPython version) or due to slots.
The main limitation of this approach is that the number of slots need to match for the objects being swapped and thus limit usage of slots in subclasses.
Draft right now to see what @colesbury thinks about doing this?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111747
Approved by: https://github.com/colesbury
This is the cheap and cheerful implementation, which is only enabled on TORCH_SHOW_CPP_STACKTRACES, because it *eagerly* symbolizes immediately at exception throw time, even if the exception will end up getting caught. It would be better to do this lazily and only symbolize when we try to print the exception, but that requires a more involved refactor of c10::Error that I don't feel like doing.
Compare the output before:
```
frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x95 (0x7fa21b99d975 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #1: c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const + 0x8d (0x7fa21b951269 in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #2: c10::TensorImpl::sizes_custom() const + 0x9f (0x7fa21b9770df in /data/users/ezyang/c/pytorch/torch/lib/libc10.so)
frame #3: at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) + 0x31e (0x7fa20a202a8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #4: <unknown function> + 0x29f34de (0x7fa20b5f34de in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #5: <unknown function> + 0x2a1fd8e (0x7fa20b61fd8e in /data/users/ezyang/c/pytorch/torch/lib/libtorch_cpu.so)
frame #6: <unknown function> + 0x6b907b (0x7fa2142b907b in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
frame #7: <unknown function> + 0x6b6175 (0x7fa2142b6175 in /data/users/ezyang/c/pytorch/torch/lib/libtorch_python.so)
```
and after:
```
#4 c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) from ??:0
#5 c10::TensorImpl::throw_cannot_call_with_symbolic(char const*) const from ??:0
#6 c10::TensorImpl::sizes_custom() const [clone .localalias] from TensorImpl.cpp:0
#7 at::meta::structured_mm::meta(at::Tensor const&, at::Tensor const&) from ??:0
#8 at::(anonymous namespace)::wrapper_Meta_mm_out_out(at::Tensor const&, at::Tensor const&, at::Tensor&) from RegisterMeta.cpp:0
#9 c10::impl::make_boxed_from_unboxed_functor<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<at::Tensor& (at::Tensor const&, at::Tensor const&, at::Tensor&), &at::(anonymous namespace)::wrapper_Meta_mm_out_out>, at::Tensor&, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor const&, at::Tensor&> >, false>::call(c10::OperatorKernel*, c10::OperatorHandle const&, c10::DispatchKeySet, std::vector<c10::IValue, std::allocator<c10::IValue> >*) from RegisterMeta.cpp:0
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113207
Approved by: https://github.com/Skylion007
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.
The istream header is ~1000 lines so the difference is non-trivial.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.
The istream header is ~1000 lines so the difference is non-trivial.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
This is a reland of https://github.com/pytorch/pytorch/pull/100007 with a build fix for Windows debug builds.
`at::native::ParamsHash` only works on structs with standard layout, but `std::string` isn't one in Visual C++ debug builds, which one can easily verified by running something like:
```cpp
#define _DEBUG
#include <type_traits>
#include <string>
static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
```
If above conditon is not met, instead of printing a static_assert output, VC++ raises a very cryptic compilation errors, see https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for more detail.
Also, using `std::hash` for string should result in a faster hash function.
(cherry picked from commit 74b7a6c75e698378882d30958908073407f97fb3)
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 5914771</samp>
This pull request introduces a new function `_group_tensors_by_device_and_dtype` that can group tensors by their device and dtype, and updates the `foreach` utilities and several optimizers to use this function. The goal is to improve the performance, readability, and compatibility of the code that handles tensors with different properties. The pull request also adds a test case and type annotations for the new function, and some error checks for the `fused` argument in Adam and AdamW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103912
Approved by: https://github.com/janeyx99
**Summary**
- Update the quantization document that default qconfig with oneDNN backend is recommended to be used on CPUs with Vector Neural Network Instruction support.
- Add the warning message when user uses default qconfig with oneDNN backend on CPU without Vector Neural Network Instruction support.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103653
Approved by: https://github.com/jgong5, https://github.com/malfet
Summary: The new logger allows passing metadata into the api usage logger. The immediate use case is to pass the serialization_id to the save and load events to be enable tracking serialized models in API events. It could be extended to add more metadata in the future.
Test Plan:
```
buck2 test @//mode/dev //caffe2/caffe2/serialize:inline_container_test
```
Reviewed By: davidberard98
Differential Revision: D45683697
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101762
Approved by: https://github.com/davidberard98