Type annotations for compile_fx.
- Some of the stuff here is pretty complicated (functions which return functions that take functions) so I bailed on those and used `Any` just to get the rest landed.
- There are also changes to type signatures in other files which I did just to let mypy know more about the types in compile_fx.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138033
Approved by: https://github.com/Skylion007
**Summary**
Previously, we assumed the packed weight for (`MKL/MKLDNN`) linear operations was at `new_input_nodes[1]`. However, this is not the case for `MKL linear`, where `new_input_nodes[1]` contains the original weight instead of the packed weight. To generalize the code, in this PR, we identify nodes that are present in `input_nodes` but not in `new_input_nodes`—indicating they are no longer used by the GEMM template and can be considered candidates for deletion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135101
Approved by: https://github.com/jgong5, https://github.com/jansel
Previously, all integer inputs to user-defined triton kernels were assumed to be int32. This would result in errors if your input was actually an int64.
This PR checks the value to determine which dtype to use for indexing: if it is known to be < int_max, then use int32 (and add guards if relevant); if we can't check (e.g. unbacked symint), then use int64.
Differential Revision: [D63797975](https://our.internmc.facebook.com/intern/diff/D63797975)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137234
Approved by: https://github.com/eellison
Summary:
# Context
Goal: Enable CK for Inductor in FBCode
We split this stack into three diffs to help with review & in case we need to revert anything.
# This Diff
* Gets us to have CK kernels as an option for GEMM autotuning in Inductor.
Reviewed By: zjing14
Differential Revision: D62662705
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136234
Approved by: https://github.com/tenpercent, https://github.com/chenyang78
Summary:
After the previous refactor, we can now call load_with_key directly from AOTAutogradCache to use the remote FXGraphCache.
This does *not* implement a remote AOTAutogradCache. It just allows AOTAutogradCache to work with remote FXGraphCache.
Test Plan: (Meta only tests)
Reviewed By: aorenste
Differential Revision: D62384944
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136173
Approved by: https://github.com/oulgen
Summary: For S444023
Test Plan:
Revert prevented the NaN errors - f639391901
Training job ran for 7767 iterations. NaN errors show up within the first 1k.
Reviewed By: nmacchioni
Differential Revision: D62224747
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135186
Approved by: https://github.com/kit1980
## Description
Fixes the FP32 accuracy failure of `resmlp_12_224` and BF16 accuracy failure of `volo_d1_224` in timm.
In this PR, we check whether input is contiguous using the following way:
If it has `FixedLayout`, we know the accurate strides. For `FlexibleLayout`, if its data is a `ComputedBuffer`, we could get the fill order of the buffer to decide whether it's contiguous. For the other cases, we won't use GEMM template as we can't infer whether it's contiguous.
## Additional context
The current GEMM template only supports this case: `input.get_stride()[-1] == 1`. In `resmlp_12_224`, when we run into this check, the layout of `input` is a `FlexibleLayout`. The reason is that when realizing the input which is a `View` IR, the `convert_to_reinterpret_view` call fails:
d14fe3ffed/torch/_inductor/ir.py (L4712-L4715)
And it finally runs into this `copy_input` and returns a `FlexibleLayout`.
d14fe3ffed/torch/_inductor/ir.py (L4722)
When checking its stride, this `FlexibleLayout` indeed satisfies `input.get_stride()[-1] == 1` but it is later decided as a `FixedLayout` with `size = (3072, 196), stride = (1, 3072)`, which is not supported by the GEMM template, thus causing accuracy issue in this model.
The `FlexibleLayout` is converted to `FixedLayout` during [CppPackedGemmTemplate.add_choices](d14fe3ffed/torch/_inductor/mkldnn_lowerings.py (L1051)) which calls [slice_nd](d14fe3ffed/torch/_inductor/codegen/cpp_template_kernel.py (L150)) when rendering the kernel (`slice_nd(X)`). When creating the `SliceView` IR, [as_storage_and_layout](d14fe3ffed/torch/_inductor/ir.py (L2288)) invokes
[decide_layout](d14fe3ffed/torch/_inductor/ir.py (L2135)) and converts it to a `FixedLayout` with `size = (3072, 196), stride = (1, 3072)`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134982
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
Part of #134054.
This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
## Summary
As part of #125683, this PR modifies existing CPU GEMM cpp template & micro-kernel template to enable int8 WoQ GEMM auto-tuning with AVX2, AVX512 & AMX ISAs (the latter is only available on Xeon 4th generation & beyond).
WoQ GEMM takes FP16/BF16 activations, int8 weights, and scale of the same dtype as activations.
The operation is equivalent to `torch.nn.functional.linear(x, w.to(x.dtype)) * scale`, which is essentially what the ATen op `torch.ops.aten._weight_int8pack_mm` currently does (except that weights are not cached by it). Weights will be considered constant & cached, so this implementation is suitable for inference, and not QAT. `scale` is supported as a `mul` epilogue.
Only BF16 activations have been supported in this PR because for FP16 & FP32, weight is dequantized during constant-folding pass of freezing, and then after auto-tuning, performance with a large `M` dimension may be better than either torch.ops.aten._weight_int8pack_mm, or the WoQ micro-kernel support introduced in this PR, which dequantizes `w` within the micro-kernel.
While even BF16 activations with a large `M` dimension may benefit from dequantizing `w` beforehand, for now, they would use WoQ support in GEMM templates for auto-tuning, and then a subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.
### Performance
#### AMX
Op-level speedup due to AMX micro-kernel (selected during auto-tuning) on 32 physical cores of Intel(R) Xeon(R) Platinum 8468H (of Xeon 4th generation series, codenamed Sapphire Rapids) vs. ATen kernel `torch.ops.aten._weight_int8pack_mm`. Intel OpenMP & tcmalloc were preloaded.
In a few cases with an odd `K`, the implementation being added in this PR may not perform as well as the ATen kernel, which is unrelated to this PR, though, since `test_linear_amx` also exhibits similar datapoints. In those cases, the AMX micro-kernel might be slower than AVX512 micro-kernel, so if such sets of shapes are used for auto-tuning, either the AVX512 micro-kernel implementation, or the ATen kernel would be chosen instead.
Benchmarked with unit-tests.
Tabular data at https://gist.github.com/sanchitintel/294811a86c8ff6b867c668ae2107c405?permalink_comment_id=5142442#gistcomment-5142442
The AVX512 micro-kernel was disabled to collect data for AMX micro-kernel.
#### AVX2/AVX512 micro-kernels
Tabular data at at https://gist.github.com/sanchitintel/52b5fa9c66f791be19e48e2aa6423dc4?permalink_comment_id=5142437#gistcomment-5142437
### Follow-up
1. int4 WoQ GEMM micro-kernel will also be added in a separate PR.
2. A subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.
E2E perf measurement should be done with #131310.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131887
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
## Summary
As part of #125683, this PR modifies existing CPU GEMM cpp template & micro-kernel template to enable int8 WoQ GEMM auto-tuning with AVX2, AVX512 & AMX ISAs (the latter is only available on Xeon 4th generation & beyond).
WoQ GEMM takes FP16/BF16 activations, int8 weights, and scale of the same dtype as activations.
The operation is equivalent to `torch.nn.functional.linear(x, w.to(x.dtype)) * scale`, which is essentially what the ATen op `torch.ops.aten._weight_int8pack_mm` currently does (except that weights are not cached by it). Weights will be considered constant & cached, so this implementation is suitable for inference, and not QAT. `scale` is supported as a `mul` epilogue.
Only BF16 activations have been supported in this PR because for FP16 & FP32, weight is dequantized during constant-folding pass of freezing, and then after auto-tuning, performance with a large `M` dimension may be better than either torch.ops.aten._weight_int8pack_mm, or the WoQ micro-kernel support introduced in this PR, which dequantizes `w` within the micro-kernel.
While even BF16 activations with a large `M` dimension may benefit from dequantizing `w` beforehand, for now, they would use WoQ support in GEMM templates for auto-tuning, and then a subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.
### Performance
#### AMX
Op-level speedup due to AMX micro-kernel (selected during auto-tuning) on 32 physical cores of Intel(R) Xeon(R) Platinum 8468H (of Xeon 4th generation series, codenamed Sapphire Rapids) vs. ATen kernel `torch.ops.aten._weight_int8pack_mm`. Intel OpenMP & tcmalloc were preloaded.
In a few cases with an odd `K`, the implementation being added in this PR may not perform as well as the ATen kernel, which is unrelated to this PR, though, since `test_linear_amx` also exhibits similar datapoints. In those cases, the AMX micro-kernel might be slower than AVX512 micro-kernel, so if such sets of shapes are used for auto-tuning, either the AVX512 micro-kernel implementation, or the ATen kernel would be chosen instead.
Benchmarked with unit-tests.
Tabular data at https://gist.github.com/sanchitintel/294811a86c8ff6b867c668ae2107c405?permalink_comment_id=5142442#gistcomment-5142442
The AVX512 micro-kernel was disabled to collect data for AMX micro-kernel.
#### AVX2/AVX512 micro-kernels
Tabular data at at https://gist.github.com/sanchitintel/52b5fa9c66f791be19e48e2aa6423dc4?permalink_comment_id=5142437#gistcomment-5142437
### Follow-up
1. int4 WoQ GEMM micro-kernel will also be added in a separate PR.
2. A subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.
E2E perf measurement should be done with #131310.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131887
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
Currently if storage_offset is unbacked symbol and is_align can not be computed compiletime - it hard fails.
Doing the best we can: adding guard_size_oblivious and fallback on False if can not be evaluated compiletime
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132423
Approved by: https://github.com/ezyang
Summary:
A couple of improvements to the generated comments in inductor kernels:
1. Makes the nodes in the comment topologically sorted, I think having them
alphabetically sorted is a gotcha. I was always confused on why the
sorting in the comments did not match the code.
2. Adds a printout of the aten graph fragment corresponding to the
current inductor kernel, to make it easier to map from aten
code to inductor code
Example float8-overhead-related inductor kernel comment after this PR:
```
# kernel path: /tmp/torchinductor_vasiliy/27/c27ts3rdw56ns7od5j6ovdnhxphished2lcu3adclzzixoo7khg5.py
# Source Nodes: [weight_fp8], Original ATen: [aten.mul, aten.clamp, aten._to_copy]
# Source node to ATen node mapping:
# weight_fp8 => clamp_max_1, clamp_min_3, convert_element_type_10, convert_element_type_11, convert_element_type_9, mul_3
# Graph fragment:
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %convert_element_type_8), kwargs = {})
# %convert_element_type_9 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_3, torch.float32), kwargs = {})
# %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%convert_element_type_9, -448.0), kwargs = {})
# %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 448.0), kwargs = {})
# %convert_element_type_10 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_max_1, torch.bfloat16), kwargs = {})
# %convert_element_type_11 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%convert_element_type_10, torch.float8_e4m3fn), kwargs = {})
triton_poi_fused__to_copy_clamp_mul_5 = async_compile.triton('triton_', '''
```
Test Plan:
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126698
Approved by: https://github.com/ezyang
ghstack dependencies: #126573
Add functional support for torch.addmm with CK backend. See also #125453
# Implementation details
1. It turns out we can use the same template between addmm and matmul; essentially, matmul is addmm with empty bias
2. The Python generator in CK was updated to generate the shared cpp template. The pip package can be installed from `pip install git+https://github.com/rocm/composable_kernel@add-addmm` and will be merged into `develop` branch after this PR lands to avoid breaking the current matmul
# Testing
`pytest test/inductor/test_ck_backend.py -k addmm`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130576
Approved by: https://github.com/chenyang78
This PR mostly refactors by putting code into utils files so that they can be shared between codecache.py and compile_fx.py. Afterwards, it then changes compile_fx so that:
- When saving to FXGraphCache, we save onto the CompiledFXGraph all the necessary metadata for running post compile steps (realigning inputs, cudagraphification).
- When loading from FXGraphCache, we use the saved information directly, instead of calculating them from scratch.
What this does is make it so that `FXGraphCache.load()` is a perfect cache on compile_fx_inner, in that it **returns exactly what compile_fx_inner returns**. This also makes it possible for AOTAutogradCache, given a key to the fx graph cache and example inputs, to get back the full return value of compile_fx_inner.
## What's a post compile step?
We define a **post-compile** to be the set of actions that need to run after FXGraphCache either loads from the cache or misses and runs compilation. These steps include:
- Setting the tracing context's output strides
- Running cudagraphs if enabled
- Maybe realign inputs if cudagraphs didn't run
To run these steps, we save all the necessary metadata in CompiledFxGraph, and use them on a cache hit to reconstruct the object.
## Splitting cudagraphs work into pre/post compile
Cudagraphs does a lot of work on the input graph module to determine if cudagraphs can be enabled. This is the code that involves cudagraph_tests and stack traces. This will work in a world where we have access to the input graph module, but with AOTAutograd warm start, we won't have access to that information anymore. Therefore we can split cudagraphs work into two parts: on a cache miss (and therefore a full compile), we do the cudagraphs testing work, and save cudagraph_fail_reasons into the cache. Then on a cache hit, we know whether or not we can run cudagraphs, and if we can't, we can emit the correct error messages.
Implementation notes:
- We save `fx_kwargs` directly onto the CompiledFXGraph. `fx_kwargs` is already, by definition, part of the cache key, so this is safe to do when it comes to cache correctness.
- ^ Why do we do above even though FXGraphCache.load takes fx_kwargs as an argument? Because AOTAutogradCache **doesn't** have access to fx_kwargs: they're annoyingly encoded in the functools.partial() of the fw_compiler, so *only* inductor knows about these options. They're fully captured by the AOTAutogradCache key (since every key to fx_kwargs is either a global config, or a field that's deterministic based on an input graph module), but their values are still needed to run cudagraphs/postprocessing. Therefore, it's easier/safer to store it on the cached result.
- Willing to hear other approaches here if we think saving these extra fields is not reasonable, though I can't think of another way to do this that's less complicated to explain.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130572
Approved by: https://github.com/eellison
Add the Inductor lowering for `torch._scaled_mm`, whose API was last updated in https://github.com/pytorch/pytorch/pull/128683.
The lowering does:
- for tensor-wise scaling, auto-tune between the default ATen kernel (cuBLAS) and Triton kernel configurations.
- for row-wise scaling, auto-tune between the default ATen kernel (CUTLASS kernel added in https://github.com/pytorch/pytorch/pull/125204) and Triton kernel configurations.
The Triton kernel template is based on 3ad9031d02 (D56337896) by @choutim, without using SPLIT_K, and that of mm `torch/_inductor/kernel/mm.py`
## Testing:
- Logging shows max-autotune tuning (`AUTOTUNE scaled_mm`) for both tensor-wise and row-wise scaling when called with the two scaling types.
- Row-wise scaling allows operator fusion between preceding pointwise/reduction op and amax/cast:
- output code Evaluating m=256, n=256, k=256, fusion_case='pointwise', scaling_mode='row'
- P1477224245 - 2 kernels
- output code Evaluating m=2048, n=256, k=2048, fusion_case='reduction', scaling_mode='row'
- P1477227340 - 2 kernels
- UT `python test/inductor/test_fp8.py -- TestFP8Lowering`
## Benchmarking
Eager/compiled tensor-wise/row-wise scaling for various shapes:
https://docs.google.com/spreadsheets/d/1VfWEVuyrwoWysfbS0_u2VHJ-PsdWkF1qIsiD60AzTes/edit?gid=2113587669#gid=2113587669
- Some of the “compiled” cases are slightly slower than “eager”. It’s because max-autotune selected the ATen kernel in the compiled case, and I think the discrepancy is variance.
Eager/compiled tensor-wise/row-wise scaling with pointwise/reduction preceding op for various shapes:
https://docs.google.com/spreadsheets/d/1Nv07NrdffQIoDeMjo9E0V-E-EYrEN0WysO_bn1bc6ns/edit?gid=1715488446#gid=1715488446
## Questions for reviewers:
- Should the type of the accumulator `ACC_TYPE` always be in float32? If not, where is this type set (output layout?)?
## Todo:
- Make the Triton template use the improved persistent kernel version (https://github.com/pytorch/FBGEMM/pull/2735 by @htyu)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130422
Approved by: https://github.com/ipiszy
```
# Mode to emulate pytorch eager numerics for lower precision (fp16, bf16)
# Pytorch eager computes bf16/fp16 by upcasting inputs to fp32 and downcasting after
# For multiple, fused pointwise nodes, inductor will elide the intermediary upcasts and downcasts
# Typically this should be closer to fp64 ref numerics. However, it can be useful for debugging
# to emulate the eager numerics.
```
We add extra upcasts and downcasts for pointwise nodes that correspond to casts that existed in the original user program (excluding pointwise nodes that are emitted during decomposition). Since this is mostly for debugging, I added this information in the `meta` so that this mode does not have unintended side effects like changing pattern matching.
in theory there could also be some other casts with fused reduction -> reduction, although i havent seen this in practice as much. could be done as follow up. note: only works with cuda backend right now.
This mode was sufficient to eliminate compile differences from https://fb.workplace.com/groups/385893200869952/posts/464263173032954/?comment_id=465199259606012&reply_comment_id=465676792891592.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131595
Approved by: https://github.com/shunting314, https://github.com/bdhirsh, https://github.com/jansel
This PR enables the Inductor compute/comm reordering passes to Traceable FSDP2 to achieve overlap. Note that the overlap is not maximally optimized yet and the follow-up work will be done in subsequent PRs.
Test commands:
- `pytest -rA test/distributed/test_compute_comm_reordering.py::TestComputeCommReorderingMultiProc`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_transformer_backend_inductor`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_nested_fully_shard_backend_inductor`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131614
Approved by: https://github.com/yifuwang
ghstack dependencies: #131510
This PR creates these `GroupedSchedulerNode`s:
- One for each all-gather code block (cast + copy-in + all-gather)
- One for each all-gather-wait code block (all-gather-wait + copy-out)
- One for each reduce-scatter code block (copy-in + reduce-scatter)
- One for each reduce-scatter-wait code block (reduce-scatter-wait)
This serves two goals:
- Prevent outside ops from being fused into these op groups, in order to have more predicable memory usage.
- Make it easier to specify the dependency e.g. from `i+1` all-gather group node to the `i` all-gather-wait group node, to enforce FSDP2 comm ordering (i.e. "serialization of comms").
The actual "reorder-for-FSDP-compute-comm-overlap" PR will come next.
Test commands:
- `pytest -rA test/distributed/test_compute_comm_reordering.py::TestComputeCommReorderingMultiProc`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_transformer_backend_inductor`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_nested_fully_shard_backend_inductor`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131510
Approved by: https://github.com/yifuwang