Commit Graph

582 Commits

Author SHA1 Message Date
07cc4bd3e2 typing compile_fx.py (#138033)
Type annotations for compile_fx.
- Some of the stuff here is pretty complicated (functions which return functions that take functions) so I bailed on those and used `Any` just to get the rest landed.
- There are also changes to type signatures in other files which I did just to let mypy know more about the types in compile_fx.py.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138033
Approved by: https://github.com/Skylion007
2024-10-21 18:14:59 +00:00
85a6a782e5 [inductor] Generalize WorkspaceArg for graph-level semaphores (#138170)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138170
Approved by: https://github.com/Chillee
2024-10-18 23:05:54 +00:00
6752e7dc3e Moved some of Inductor IR nodes to be frozen (#137859)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137859
Approved by: https://github.com/ezyang
2024-10-17 18:04:45 +00:00
0dbbcfa7ae [Inductor UT] Generalize newly introduced inductor UTs for intel GPU (Part 3) (#136947)
[Inductor UT] Generalize Newly introduced inductor UTs for intel GPU
reuse `test/inductor/test_pattern_matcher.py`
reuse `test/inductor/test_snode_runtime.py`
reuse `test/inductor/test_unbacked_symints.py`
fix `test/inductor/test_triton_kernels.py`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136947
Approved by: https://github.com/etaf, https://github.com/EikanWang, https://github.com/jansel
2024-10-12 13:21:20 +00:00
71010bf097 [Inductor][CPP] generalize the wgt tensor delete (#135101)
**Summary**
Previously, we assumed the packed weight for (`MKL/MKLDNN`) linear operations was at `new_input_nodes[1]`. However, this is not the case for `MKL linear`, where `new_input_nodes[1]` contains the original weight instead of the packed weight. To generalize the code, in this PR, we identify nodes that are present in `input_nodes` but not in `new_input_nodes`—indicating they are no longer used by the GEMM template and can be considered candidates for deletion.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135101
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-10-10 06:01:09 +00:00
4061910ba2 Have Triton CPU backend respect max_autotune setting (#137276)
We would previously do it regardless of the setting's value.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137276
Approved by: https://github.com/jansel, https://github.com/desertfire
2024-10-06 03:03:33 +00:00
54094c0c26 [inductor][user triton] Check size hints to determine indexing dtype (#137234)
Previously, all integer inputs to user-defined triton kernels were assumed to be int32. This would result in errors if your input was actually an int64.

This PR checks the value to determine which dtype to use for indexing: if it is known to be < int_max, then use int32 (and add guards if relevant); if we can't check (e.g. unbacked symint), then use int64.

Differential Revision: [D63797975](https://our.internmc.facebook.com/intern/diff/D63797975)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137234
Approved by: https://github.com/eellison
2024-10-03 22:07:26 +00:00
d117ec1d6e [3/3][Inductor] Make CK work in FBCode (#136234)
Summary:
# Context
Goal: Enable CK for Inductor in FBCode

We split this stack into three diffs to help with review & in case we need to revert anything.

# This Diff
* Gets us to have CK kernels as an option for GEMM autotuning in Inductor.

Reviewed By: zjing14

Differential Revision: D62662705

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136234
Approved by: https://github.com/tenpercent, https://github.com/chenyang78
2024-10-02 12:17:38 +00:00
e9a55b43a1 [inductor] Support lists of tensors in operatorbench (#136911)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136911
Approved by: https://github.com/eellison
2024-10-02 06:41:06 +00:00
0788d016d6 Update incompatible cudagraph ops skip message (#137015)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137015
Approved by: https://github.com/BoyuanFeng
2024-10-01 21:23:36 +00:00
3f457ee1f6 Fix AOT Graph capture not propagating non_blocking copy parameter to … (#136513)
…inductor codegen.

Fixes #136260

**Note**: this is my first code contribution to torch so please let me know if there's anything I need to fix/some other convention I should follow.

Regarding the bug, re-running the issue's reproduction code:
```
import torch

def fn(x):
    return x.to(device="cuda", non_blocking=True)

inp = torch.randn(3, 4)

torch.compile(fn)(inp)
```

We now have the non_blocking being passed on to codegen properly:

```
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code] TRACED GRAPH
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]  ===== pre insert_deferred_runtime_asserts __compiled_fn_1 =====
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]  <eval_with_key>.0 class GraphModule(torch.nn.Module):
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]     def forward(self, L_x_: "f32[3, 4]"):
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]         l_x_ = L_x_
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]          # File: /home/niklasz/Desktop/pytorch/temp/reproduction.py:4 in fn, code: return x.to(device="cuda", non_blocking=True)
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]         to: "f32[3, 4]" = l_x_.to(device = 'cuda', non_blocking = True);  l_x_ = None
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]         return (to,)
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]
V0922 20:33:25.393000 679839 torch/fx/passes/runtime_assert.py:114] [0/0] [__graph_code]
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code] TRACED GRAPH
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]  ===== __compiled_fn_1 =====
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]  /home/niklasz/Desktop/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]     def forward(self, L_x_: "f32[3, 4][4, 1]cpu"):
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]         l_x_ = L_x_
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]          # File: /home/niklasz/Desktop/pytorch/temp/reproduction.py:4 in fn, code: return x.to(device="cuda", non_blocking=True)
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]         to: "f32[3, 4][4, 1]cuda:0" = l_x_.to(device = 'cuda', non_blocking = True);  l_x_ = None
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]         return (to,)
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]
V0922 20:33:25.394000 679839 torch/_dynamo/output_graph.py:1340] [0/0] [__graph_code]
V0922 20:33:25.404000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:114] [0/0] [__aot_graphs] aot_config id: 0, fw_metadata=ViewAndMutationMeta(input_info=[InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=False, keep_input_mutations=True)], output_info=[OutputAliasInfo(output_type=<OutputType.non_alias: 1>, raw_type=<class 'torch._subclasses.functional_tensor.FunctionalTensor'>, base_idx=None, dynamic_dims=set(), requires_grad=False, functional_tensor=None)], num_intermediate_bases=0, keep_input_mutations=True, traced_tangents=[], subclass_inp_meta=[0], subclass_fw_graph_out_meta=[0], subclass_tangent_meta=[], is_train=False, traced_tangent_metas=None, num_symints_saved_for_bw=None, grad_enabled_mutation=None, deterministic=None, static_input_indices=[], tokens={}, indices_of_inputs_that_requires_grad_with_mutations_in_bw=[], bw_donated_idxs=None, num_backward_tokens=0),subclass_metadata=None
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs] TRACED GRAPH
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]  ===== Forward graph 0 =====
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]  /home/niklasz/Desktop/pytorch/torch/fx/_lazy_graph_module.py class <lambda>(torch.nn.Module):
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]     def forward(self, arg0_1: "f32[3, 4][4, 1]cpu"):
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]          # File: /home/niklasz/Desktop/pytorch/temp/reproduction.py:4 in fn, code: return x.to(device="cuda", non_blocking=True)
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]         device_put: "f32[3, 4][4, 1]cuda:0" = torch.ops.prims.device_put.default(arg0_1, device(type='cuda', index=0), True);  arg0_1 = None
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]         convert_element_type: "f32[3, 4][4, 1]cuda:0" = torch.ops.prims.convert_element_type.default(device_put, torch.float32);  device_put = None
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]         return (convert_element_type,)
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]
I0922 20:33:25.409000 679839 torch/_functorch/_aot_autograd/dispatch_and_compile_graph.py:204] [0/0] [__aot_graphs]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1134] [0/0] [__output_code] Output code written to: /tmp/torchinductor_niklasz/ha/chaai264g6ribfw3q2qhl6ayjtaqaavku5wivxtzw4nabgd6htsv.py
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] Output code:
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] # AOT ID: ['0_inference']
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from ctypes import c_void_p, c_long, c_int
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import torch
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import math
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import random
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import os
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] import tempfile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from math import inf, nan
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.hooks import run_intermediate_hooks
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.utils import maybe_profile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.codegen.memory_planning import _align as align
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch import device, empty_strided
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.async_compile import AsyncCompile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.select_algorithm import extern_kernels
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] from torch._inductor.codegen.multi_kernel import MultiKernelCall
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] aten = torch.ops.aten
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] inductor_ops = torch.ops.inductor
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] _quantized = torch.ops._quantized
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] assert_size_stride = torch._C._dynamo.guards.assert_size_stride
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] alloc_from_pool = torch.ops.inductor._alloc_from_pool
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] async_compile = AsyncCompile()
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] async_compile.wait(globals())
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] del async_compile
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] def call(args):
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     arg0_1, = args
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     args.clear()
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     assert_size_stride(arg0_1, (3, 4), (4, 1))
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     with torch.cuda._DeviceGuard(0):
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         torch.cuda.set_device(0)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         buf0 = empty_strided_cuda((3, 4), (4, 1), torch.float32)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         buf0.copy_(arg0_1, True)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]         del arg0_1
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     return (buf0, )
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] def benchmark_compiled_module(times=10, repeat=10):
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     from torch._dynamo.testing import rand_strided
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     from torch._inductor.utils import print_performance
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     arg0_1 = rand_strided((3, 4), (4, 1), device='cpu', dtype=torch.float32)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     fn = lambda: call([arg0_1])
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     return print_performance(fn, times=times, repeat=repeat)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code] if __name__ == "__main__":
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     from torch._inductor.wrapper_benchmark import compiled_module_main
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]     compiled_module_main('None', benchmark_compiled_module)
V0922 20:33:25.983000 679839 torch/_inductor/codecache.py:1135] [0/0] [__output_code]
```
See above line `buf0.copy_(arg0_1, True)`. Specific log setting used: `export TORCH_LOGS="graph_code,aot_graphs,output_code"`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136513
Approved by: https://github.com/eellison
2024-10-01 00:32:47 +00:00
71aac59e93 Add Triton CPU as an Inductor backend (#133408)
The goal is to use Inductor-generated kernels to stress test the new Triton CPU backend.

Differential Revision: [D63298968](https://our.internmc.facebook.com/intern/diff/D63298968)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133408
Approved by: https://github.com/jansel, https://github.com/blaine-rister, https://github.com/malfet
2024-09-30 20:24:52 +00:00
d33638588e [aoti][inplace] Support skipping model buffers (#136770)
Summary: Some AOTI tensor constants may be model buffers that never needs to be updated.

Differential Revision: D62777502

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136770
Approved by: https://github.com/muchulee8
2024-09-30 18:28:42 +00:00
36428f91e9 Revert "Add Triton CPU as an Inductor backend (#133408)"
This reverts commit 31c0467594c7c41c8e8ff1828bf01fa31fc4454f.

Reverted https://github.com/pytorch/pytorch/pull/133408 on behalf of https://github.com/int3 due to internal tests failing ([comment](https://github.com/pytorch/pytorch/pull/133408#issuecomment-2379692517))
2024-09-27 16:54:27 +00:00
31c0467594 Add Triton CPU as an Inductor backend (#133408)
The goal is to use Inductor-generated kernels to stress test the new Triton CPU backend.

Differential Revision: [D63298968](https://our.internmc.facebook.com/intern/diff/D63298968)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133408
Approved by: https://github.com/jansel, https://github.com/blaine-rister, https://github.com/malfet
2024-09-26 15:35:26 +00:00
95c0f7493f [Inductor] Rename WrapperCodeGen to PythonWrapperCodegen (#136062)
Summary: Rename WrapperCodeGen to PythonWrapperCodegen to make its meaning more explicit.

Differential Revision: [D63300358](https://our.internmc.facebook.com/intern/diff/D63300358)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136062
Approved by: https://github.com/angelayi, https://github.com/chenyang78
2024-09-24 21:02:51 +00:00
4649aeaebf Make AOTAutogradCache support remote FXGraphCache (#136173)
Summary:
After the previous refactor, we can now call load_with_key directly from AOTAutogradCache to use the remote FXGraphCache.

This does *not* implement a remote AOTAutogradCache. It just allows AOTAutogradCache to work with remote FXGraphCache.

Test Plan: (Meta only tests)

Reviewed By: aorenste

Differential Revision: D62384944

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136173
Approved by: https://github.com/oulgen
2024-09-23 17:24:27 +00:00
d0cebedb31 Revert "Add Triton CPU as an Inductor backend (#133408)"
This reverts commit e498b02b472e45cfd6b7a08db0d6c1babec655c5.

Reverted https://github.com/pytorch/pytorch/pull/133408 on behalf of https://github.com/jeanschmidt due to Broke internal signals, see D62737208 for more details ([comment](https://github.com/pytorch/pytorch/pull/133408#issuecomment-2353623816))
2024-09-16 18:33:33 +00:00
e498b02b47 Add Triton CPU as an Inductor backend (#133408)
The goal is to use Inductor-generated kernels to stress test the new Triton CPU backend.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133408
Approved by: https://github.com/jansel
2024-09-14 21:45:19 +00:00
3decb676aa [inductor] Optimize cache_on_self (#135445)
This is a small compile time win, but also makes profiles more readable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135445
Approved by: https://github.com/oulgen
2024-09-12 05:22:23 +00:00
ee8c5cc1cc For S444023: Back out "deprecate search_autotune_cache (#133628)" (#135186)
Summary: For S444023

Test Plan:
Revert prevented the NaN errors - f639391901
Training job ran for 7767 iterations. NaN errors show up within the first 1k.

Reviewed By: nmacchioni

Differential Revision: D62224747

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135186
Approved by: https://github.com/kit1980
2024-09-11 14:08:40 +00:00
146921007a [inductor] [cpp] fix the input contiguous check in max-autotune (#134982)
## Description
Fixes the FP32 accuracy failure of `resmlp_12_224` and BF16 accuracy failure of `volo_d1_224` in timm.

In this PR, we check whether input is contiguous using the following way:
If it has `FixedLayout`, we know the accurate strides. For `FlexibleLayout`, if its data is a `ComputedBuffer`, we could get the fill order of the buffer to decide whether it's contiguous. For the other cases, we won't use GEMM template as we can't infer whether it's contiguous.

## Additional context
The current GEMM template only supports this case: `input.get_stride()[-1] == 1`. In `resmlp_12_224`, when we run into this check, the layout of `input` is a `FlexibleLayout`. The reason is that when realizing the input which is a `View` IR, the `convert_to_reinterpret_view` call fails:
d14fe3ffed/torch/_inductor/ir.py (L4712-L4715)

And it finally runs into this `copy_input` and returns a `FlexibleLayout`.
d14fe3ffed/torch/_inductor/ir.py (L4722)

When checking its stride, this `FlexibleLayout` indeed satisfies `input.get_stride()[-1] == 1` but it is later decided as a `FixedLayout` with `size = (3072, 196), stride = (1, 3072)`, which is not supported by the GEMM template, thus causing accuracy issue in this model.
The `FlexibleLayout` is converted to `FixedLayout` during [CppPackedGemmTemplate.add_choices](d14fe3ffed/torch/_inductor/mkldnn_lowerings.py (L1051)) which calls [slice_nd](d14fe3ffed/torch/_inductor/codegen/cpp_template_kernel.py (L150)) when rendering the kernel (`slice_nd(X)`). When creating the `SliceView` IR, [as_storage_and_layout](d14fe3ffed/torch/_inductor/ir.py (L2288)) invokes
[decide_layout](d14fe3ffed/torch/_inductor/ir.py (L2135)) and converts it to a `FixedLayout` with `size = (3072, 196), stride = (1, 3072)`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134982
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-09-10 02:47:38 +00:00
cff1158200 [inductor] Pass to fix device on index(..., [iota]) (#134748)
This pattern was preventing cudagraphs from kicking in on torch_multimodal_clip, resulting in `1.6529 → 3.3471` speedup.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134748
Approved by: https://github.com/shunting314
2024-09-04 17:31:58 +00:00
d95aedf5fd [BE] typing for decorators - fx/_compatibility (part 1) (#134202)
Part of #134054.

This corresponds to the pytorch mypy changes from D61493706. Updating takes so
long and touches so many files that it's impossible to land as a whole without conflicting with some other intermediate change.
So landing these 'type: ignore' for pytorch in advance of them actually being needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134202
Approved by: https://github.com/Skylion007
2024-08-22 17:07:33 +00:00
c2e2602ecd [Inductor] Move GPU_TYPE(The runtime avaliable gpu type, cuda or xpu) from (#132740)
Move GPU_TYPE(The runtime avaliable gpu type, cuda or xpu) from `testing/_internal/inductor_utils.py` to `_inductor/utils.py`. So that we can use it in Inductor, not limited in test case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132740
Approved by: https://github.com/EikanWang, https://github.com/jansel
2024-08-21 11:18:00 +00:00
dd69013c7a deprecate search_autotune_cache (#133628)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133628
Approved by: https://github.com/oulgen
2024-08-16 09:29:39 +00:00
f951fcd1d7 Inductor-CPU WoQ int8 GEMM micro-kernel with scale epilogue (#131887)
## Summary

As part of #125683, this PR modifies existing CPU GEMM cpp template & micro-kernel template to enable int8 WoQ GEMM auto-tuning with AVX2, AVX512 & AMX ISAs (the latter is only available on Xeon 4th generation & beyond).

WoQ GEMM takes FP16/BF16 activations, int8 weights, and scale of the same dtype as activations.
The operation is equivalent to `torch.nn.functional.linear(x, w.to(x.dtype)) * scale`, which is essentially what the ATen op `torch.ops.aten._weight_int8pack_mm` currently does (except that weights are not cached by it). Weights will be considered constant & cached, so this implementation is suitable for inference, and not QAT. `scale` is supported as a `mul` epilogue.

Only BF16 activations have been supported in this PR because for FP16 & FP32, weight is dequantized during constant-folding pass of freezing, and then after auto-tuning, performance with a large `M` dimension may be better than either torch.ops.aten._weight_int8pack_mm, or the WoQ micro-kernel support introduced in this PR, which dequantizes `w` within the micro-kernel.
While even BF16 activations with a large `M` dimension may benefit from dequantizing `w` beforehand, for now, they would  use WoQ support in GEMM templates for auto-tuning, and then a subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

### Performance
#### AMX
Op-level speedup due to AMX micro-kernel (selected during auto-tuning) on 32 physical cores of Intel(R) Xeon(R) Platinum 8468H (of Xeon 4th generation series, codenamed Sapphire Rapids) vs. ATen kernel `torch.ops.aten._weight_int8pack_mm`. Intel OpenMP & tcmalloc were preloaded.

In a few cases with an odd `K`, the implementation being added in this PR may not perform as well as the ATen kernel, which is unrelated to this PR, though, since `test_linear_amx` also exhibits similar datapoints. In those cases, the AMX micro-kernel might be slower than AVX512 micro-kernel, so if such sets of shapes are used for auto-tuning, either the AVX512 micro-kernel implementation, or the ATen kernel would be chosen instead.

Benchmarked with unit-tests.

Tabular data at https://gist.github.com/sanchitintel/294811a86c8ff6b867c668ae2107c405?permalink_comment_id=5142442#gistcomment-5142442

The AVX512 micro-kernel was disabled to collect data for AMX micro-kernel.

#### AVX2/AVX512 micro-kernels

Tabular data at at https://gist.github.com/sanchitintel/52b5fa9c66f791be19e48e2aa6423dc4?permalink_comment_id=5142437#gistcomment-5142437

### Follow-up
1. int4 WoQ GEMM micro-kernel will also be added in a separate PR.
2. A subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

E2E perf measurement should be done with #131310.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131887
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-08-14 03:14:45 +00:00
89670d5bdd Revert "Inductor-CPU WoQ int8 GEMM micro-kernel with scale epilogue (#131887)"
This reverts commit 8fbd7d92a81b61d41363edb1b3902ba7701d5a27.

Reverted https://github.com/pytorch/pytorch/pull/131887 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/131887#issuecomment-2285082401))
2024-08-12 23:45:46 +00:00
36c4ed8e49 [inductor] add FreeLibrary to DLLWrapper for Windows. (#133184)
For previous PR https://github.com/pytorch/pytorch/pull/132630 . We found `DLLWrapper` class doesn't have `_dlclose` implemention for Windows.

I write a small test project to figure out how to make it works on Windows: https://github.com/xuhancn/ctypes_all_lifecycle/blob/main/pysrc/module_manage.py#L30-L61
Test result: https://github.com/xuhancn/ctypes_all_lifecycle/tree/main?tab=readme-ov-file#ctypes_cyclepy

So, I have port the Windows FreeLibrary implemention to pytorch DLLWrapper in this PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133184
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-08-12 19:55:48 +00:00
8fbd7d92a8 Inductor-CPU WoQ int8 GEMM micro-kernel with scale epilogue (#131887)
## Summary

As part of #125683, this PR modifies existing CPU GEMM cpp template & micro-kernel template to enable int8 WoQ GEMM auto-tuning with AVX2, AVX512 & AMX ISAs (the latter is only available on Xeon 4th generation & beyond).

WoQ GEMM takes FP16/BF16 activations, int8 weights, and scale of the same dtype as activations.
The operation is equivalent to `torch.nn.functional.linear(x, w.to(x.dtype)) * scale`, which is essentially what the ATen op `torch.ops.aten._weight_int8pack_mm` currently does (except that weights are not cached by it). Weights will be considered constant & cached, so this implementation is suitable for inference, and not QAT. `scale` is supported as a `mul` epilogue.

Only BF16 activations have been supported in this PR because for FP16 & FP32, weight is dequantized during constant-folding pass of freezing, and then after auto-tuning, performance with a large `M` dimension may be better than either torch.ops.aten._weight_int8pack_mm, or the WoQ micro-kernel support introduced in this PR, which dequantizes `w` within the micro-kernel.
While even BF16 activations with a large `M` dimension may benefit from dequantizing `w` beforehand, for now, they would  use WoQ support in GEMM templates for auto-tuning, and then a subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

### Performance
#### AMX
Op-level speedup due to AMX micro-kernel (selected during auto-tuning) on 32 physical cores of Intel(R) Xeon(R) Platinum 8468H (of Xeon 4th generation series, codenamed Sapphire Rapids) vs. ATen kernel `torch.ops.aten._weight_int8pack_mm`. Intel OpenMP & tcmalloc were preloaded.

In a few cases with an odd `K`, the implementation being added in this PR may not perform as well as the ATen kernel, which is unrelated to this PR, though, since `test_linear_amx` also exhibits similar datapoints. In those cases, the AMX micro-kernel might be slower than AVX512 micro-kernel, so if such sets of shapes are used for auto-tuning, either the AVX512 micro-kernel implementation, or the ATen kernel would be chosen instead.

Benchmarked with unit-tests.

Tabular data at https://gist.github.com/sanchitintel/294811a86c8ff6b867c668ae2107c405?permalink_comment_id=5142442#gistcomment-5142442

The AVX512 micro-kernel was disabled to collect data for AMX micro-kernel.

#### AVX2/AVX512 micro-kernels

Tabular data at at https://gist.github.com/sanchitintel/52b5fa9c66f791be19e48e2aa6423dc4?permalink_comment_id=5142437#gistcomment-5142437

### Follow-up
1. int4 WoQ GEMM micro-kernel will also be added in a separate PR.
2. A subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

E2E perf measurement should be done with #131310.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131887
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-08-10 02:01:04 +00:00
065f7aa44b [inductor] tensor_is_align fallbacking False if unbacked expr not comptime evaled (#132423)
Currently if storage_offset is unbacked symbol and is_align can not be computed compiletime - it hard fails.

Doing the best we can: adding guard_size_oblivious and fallback on False if can not be evaluated compiletime

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132423
Approved by: https://github.com/ezyang
2024-08-09 15:07:42 +00:00
700a11fdd4 Make inductor kernel metadata comments more descriptive (#126698)
Summary:

A couple of improvements to the generated comments in inductor kernels:

1. Makes the nodes in the comment topologically sorted, I think having them
   alphabetically sorted is a gotcha. I was always confused on why the
   sorting in the comments did not match the code.
2. Adds a printout of the aten graph fragment corresponding to the
   current inductor kernel, to make it easier to map from aten
   code to inductor code

Example float8-overhead-related inductor kernel comment after this PR:

```
# kernel path: /tmp/torchinductor_vasiliy/27/c27ts3rdw56ns7od5j6ovdnhxphished2lcu3adclzzixoo7khg5.py
# Source Nodes: [weight_fp8], Original ATen: [aten.mul, aten.clamp, aten._to_copy]
# Source node to ATen node mapping:
#   weight_fp8 => clamp_max_1, clamp_min_3, convert_element_type_10, convert_element_type_11, convert_element_type_9, mul_3
# Graph fragment:
#   %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %convert_element_type_8), kwargs = {})
#   %convert_element_type_9 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_3, torch.float32), kwargs = {})
#   %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%convert_element_type_9, -448.0), kwargs = {})
#   %clamp_max_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 448.0), kwargs = {})
#   %convert_element_type_10 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_max_1, torch.bfloat16), kwargs = {})
#   %convert_element_type_11 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%convert_element_type_10, torch.float8_e4m3fn), kwargs = {})
triton_poi_fused__to_copy_clamp_mul_5 = async_compile.triton('triton_', '''
```

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126698
Approved by: https://github.com/ezyang
ghstack dependencies: #126573
2024-08-07 21:25:09 +00:00
1c7dc335f7 [ROCm][CK][Inductor] Enable addmm for CK backend to gemm max autotune (#130576)
Add functional support for torch.addmm with CK backend. See also #125453

# Implementation details
1. It turns out we can use the same template between addmm and matmul; essentially, matmul is addmm with empty bias
2. The Python generator in CK was updated to generate the shared cpp template. The pip package can be installed from `pip install git+https://github.com/rocm/composable_kernel@add-addmm` and will be merged into `develop` branch after this PR lands to avoid breaking the current matmul

# Testing
`pytest test/inductor/test_ck_backend.py -k addmm`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130576
Approved by: https://github.com/chenyang78
2024-08-05 17:49:09 +00:00
72d2dba992 Add None return type to init (#132335)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132335
Approved by: https://github.com/albanD
2024-08-01 15:26:45 +00:00
f9e4d05c15 Save and run post compilation steps within FXGraphCache (#130572)
This PR mostly refactors by putting code into utils files so that they can be shared between codecache.py and compile_fx.py. Afterwards, it then changes compile_fx so that:
- When saving to FXGraphCache, we save onto the CompiledFXGraph all the necessary metadata for running post compile steps (realigning inputs, cudagraphification).
- When loading from FXGraphCache, we use the saved information directly, instead of calculating them from scratch.

What this does is make it so that `FXGraphCache.load()` is a perfect cache on compile_fx_inner, in that it **returns exactly what compile_fx_inner returns**. This also makes it possible for AOTAutogradCache, given a key to the fx graph cache and example inputs, to get back the full return value of compile_fx_inner.

## What's a post compile step?
We define a **post-compile** to be the set of actions that need to run after FXGraphCache either loads from the cache or misses and runs compilation. These steps include:
- Setting the tracing context's output strides
- Running cudagraphs if enabled
- Maybe realign inputs if cudagraphs didn't run

To run these steps, we save all the necessary metadata in CompiledFxGraph, and use them on a cache hit to reconstruct the object.

## Splitting cudagraphs work into pre/post compile
Cudagraphs does a lot of work on the input graph module to determine if cudagraphs can be enabled. This is the code that involves cudagraph_tests and stack traces. This will work in a world where we have access to the input graph module, but with AOTAutograd warm start, we won't have access to that information anymore. Therefore we can split cudagraphs work into two parts: on a cache miss (and therefore a full compile), we do the cudagraphs testing work, and save cudagraph_fail_reasons into the cache. Then on a cache hit, we know whether or not we can run cudagraphs, and if we can't, we can emit the correct error messages.

Implementation notes:
- We save `fx_kwargs` directly onto the CompiledFXGraph. `fx_kwargs` is already, by definition, part of the cache key, so this is safe to do when it comes to cache correctness.
- ^ Why do we do above even though FXGraphCache.load takes fx_kwargs as an argument? Because AOTAutogradCache **doesn't** have access to fx_kwargs: they're annoyingly encoded in the functools.partial() of the fw_compiler, so *only* inductor knows about these options. They're fully captured by the AOTAutogradCache key (since every key to fx_kwargs is either a global config, or a field that's deterministic based on an input graph module), but their values are still needed to run cudagraphs/postprocessing. Therefore, it's easier/safer to store it on the cached result.
- Willing to hear other approaches here if we think saving these extra fields is not reasonable, though I can't think of another way to do this that's less complicated to explain.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130572
Approved by: https://github.com/eellison
2024-07-31 18:32:40 +00:00
e7eeee473c [BE][Easy][14/19] enforce style for empty lines in import segments in torch/_[a-c]*/ and torch/_[e-h]*/ and torch/_[j-z]*/ (#129765)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129765
Approved by: https://github.com/ezyang
2024-07-31 10:42:50 +00:00
882d80fd92 Add lowering for updated _scaled_mm (fixing submodules) (#130422)
Add the Inductor lowering for `torch._scaled_mm`, whose API was last updated in https://github.com/pytorch/pytorch/pull/128683.

The lowering does:
- for tensor-wise scaling, auto-tune between the default ATen kernel (cuBLAS) and Triton kernel configurations.
- for row-wise scaling, auto-tune between the default ATen kernel (CUTLASS kernel added in https://github.com/pytorch/pytorch/pull/125204) and Triton kernel configurations.

The Triton kernel template is based on 3ad9031d02 (D56337896) by @choutim, without using SPLIT_K, and that of mm `torch/_inductor/kernel/mm.py`

## Testing:
- Logging shows max-autotune tuning (`AUTOTUNE scaled_mm`) for both tensor-wise and row-wise scaling when called with the two scaling types.
- Row-wise scaling allows operator fusion between preceding pointwise/reduction op and amax/cast:
    - output code Evaluating m=256, n=256, k=256, fusion_case='pointwise', scaling_mode='row'
        - P1477224245 - 2 kernels
    - output code Evaluating m=2048, n=256, k=2048, fusion_case='reduction', scaling_mode='row'
        - P1477227340 - 2 kernels

- UT `python test/inductor/test_fp8.py -- TestFP8Lowering`

## Benchmarking

Eager/compiled tensor-wise/row-wise scaling for various shapes:
https://docs.google.com/spreadsheets/d/1VfWEVuyrwoWysfbS0_u2VHJ-PsdWkF1qIsiD60AzTes/edit?gid=2113587669#gid=2113587669
- Some of the “compiled” cases are slightly slower than “eager”. It’s because max-autotune selected the ATen kernel in the compiled case, and I think the discrepancy is variance.

Eager/compiled tensor-wise/row-wise scaling with pointwise/reduction preceding op for various shapes:
https://docs.google.com/spreadsheets/d/1Nv07NrdffQIoDeMjo9E0V-E-EYrEN0WysO_bn1bc6ns/edit?gid=1715488446#gid=1715488446

## Questions for reviewers:
- Should the type of the accumulator `ACC_TYPE` always be in float32? If not, where is this type set (output layout?)?

## Todo:
- Make the Triton template use the improved persistent kernel version (https://github.com/pytorch/FBGEMM/pull/2735 by @htyu)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130422
Approved by: https://github.com/ipiszy
2024-07-30 23:48:48 +00:00
9598c58618 Add config option to skip autotuning conv (#131839)
requested internally bc for some models the conv templates are not very helpful

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131839
Approved by: https://github.com/oulgen
ghstack dependencies: #131400
2024-07-30 01:57:53 +00:00
5a2620302b [inductor] Replace self_cuda_time_total function calls with self_dev… (#131029)
…ice_time_total for wrapper_bench

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131029
Approved by: https://github.com/shunting314
2024-07-30 01:57:39 +00:00
8b507a922a Mode to emulate amp numerics (#131595)
```
# Mode to emulate pytorch eager numerics for lower precision (fp16, bf16)
# Pytorch eager computes bf16/fp16 by upcasting inputs to fp32 and downcasting after
# For multiple, fused pointwise nodes, inductor will elide the intermediary upcasts and downcasts
# Typically this should be closer to fp64 ref numerics. However, it can be useful for debugging
# to emulate the eager numerics.
```

We add extra upcasts and downcasts for pointwise nodes that correspond to casts that existed in the original user program (excluding pointwise nodes that are emitted during decomposition). Since this is mostly for debugging, I added this information in the `meta` so that this mode does not have unintended side effects like changing pattern matching.

in theory there could also be some other casts with fused reduction -> reduction, although i havent seen this in practice as much. could be done as follow up. note: only works with cuda backend right now.

This mode was sufficient to eliminate compile differences from https://fb.workplace.com/groups/385893200869952/posts/464263173032954/?comment_id=465199259606012&reply_comment_id=465676792891592.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131595
Approved by: https://github.com/shunting314, https://github.com/bdhirsh, https://github.com/jansel
2024-07-29 22:42:23 +00:00
62b2e7a553 Revert "Add config option to skip autotuning conv (#131839)"
This reverts commit 3d4de8e96d0bb1fe19b25734a97a19dd85313692.

Reverted https://github.com/pytorch/pytorch/pull/131839 on behalf of https://github.com/eellison due to wrong config name ([comment](https://github.com/pytorch/pytorch/pull/131839#issuecomment-2257117221))
2024-07-29 22:31:51 +00:00
3d4de8e96d Add config option to skip autotuning conv (#131839)
requested internally bc for some models the conv templates are not very helpful

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131839
Approved by: https://github.com/oulgen
ghstack dependencies: #131400
2024-07-29 16:43:58 +00:00
945bf78894 Revert "[BE] typing for decorators - fx/_compatibility (#131568)"
This reverts commit 193f62fde91ee20deb5ddcd9ff4593cd78d74c64.

Reverted https://github.com/pytorch/pytorch/pull/131568 on behalf of https://github.com/clee2000 due to same as https://github.com/pytorch/pytorch/pull/131572#issuecomment-2254328359 but I clicked the wrong link by accident.  This is where it actually starts ([comment](https://github.com/pytorch/pytorch/pull/131568#issuecomment-2254330781))
2024-07-28 03:43:39 +00:00
aee6bcdba4 [Traceable FSDP2][Inductor] Apply compute/comm reordering passes to achieve overlap (#131614)
This PR enables the Inductor compute/comm reordering passes to Traceable FSDP2 to achieve overlap. Note that the overlap is not maximally optimized yet and the follow-up work will be done in subsequent PRs.

Test commands:
- `pytest -rA  test/distributed/test_compute_comm_reordering.py::TestComputeCommReorderingMultiProc`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_transformer_backend_inductor`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_nested_fully_shard_backend_inductor`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131614
Approved by: https://github.com/yifuwang
ghstack dependencies: #131510
2024-07-27 08:39:58 +00:00
9e06572704 [Traceable FSDP2][Inductor] Create grouped nodes for FSDP2 all-gather code block and reduce-scatter code block (after Buffer/Operation split) (#131510)
This PR creates these `GroupedSchedulerNode`s:
- One for each all-gather code block (cast + copy-in + all-gather)
- One for each all-gather-wait code block (all-gather-wait + copy-out)
- One for each reduce-scatter code block (copy-in + reduce-scatter)
- One for each reduce-scatter-wait code block (reduce-scatter-wait)

This serves two goals:
- Prevent outside ops from being fused into these op groups, in order to have more predicable memory usage.
- Make it easier to specify the dependency e.g. from `i+1` all-gather group node to the `i` all-gather-wait group node, to enforce FSDP2 comm ordering (i.e. "serialization of comms").

The actual "reorder-for-FSDP-compute-comm-overlap" PR will come next.

Test commands:
- `pytest -rA  test/distributed/test_compute_comm_reordering.py::TestComputeCommReorderingMultiProc`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_transformer_backend_inductor`
- `pytest -rA test/distributed/_composable/fsdp/test_fully_shard_compile.py::TestFullyShardCompile::test_nested_fully_shard_backend_inductor`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131510
Approved by: https://github.com/yifuwang
2024-07-27 08:39:58 +00:00
a90b8b967a [inductor] enable windows inductor UTs (#131767)
Changes:
1. Add `skipIfWindows` function.
2. Fix `fresh_inductor_cache` raise error on Windows, due to can't delete loaded modules.
3. Disable some UTs, which are not passed on Windows.
4. Enable test_torchinductor in Windows CI.

I have tested passed on my dev machine:
<img width="864" alt="image" src="https://github.com/user-attachments/assets/91d5a62f-7383-44b3-b614-99940f196fdb">

TODO: review and fix the skipped cases.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131767
Approved by: https://github.com/jgong5, https://github.com/jansel
2024-07-27 02:46:03 +00:00
16d7cb5049 [CUDAGraph] Type annotation for cudagraph_trees.py (#131621)
As a Better Engineer effort, this PR adds type annotation to `cudagraph_trees.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131621
Approved by: https://github.com/eellison
2024-07-26 06:14:06 +00:00
03f49c9523 Revert "[CUDAGraph] Type annotation for cudagraph_trees.py (#131621)"
This reverts commit 16699c7d848fca669865d83ffff205bcbb8665be.

Reverted https://github.com/pytorch/pytorch/pull/131621 on behalf of https://github.com/atalman due to lint is failing, please rebase fix lint and reland ([comment](https://github.com/pytorch/pytorch/pull/131621#issuecomment-2251831163))
2024-07-26 02:08:45 +00:00
16699c7d84 [CUDAGraph] Type annotation for cudagraph_trees.py (#131621)
As a Better Engineer effort, this PR adds type annotation to `cudagraph_trees.py`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131621
Approved by: https://github.com/eellison
2024-07-26 01:40:23 +00:00
193f62fde9 [BE] typing for decorators - fx/_compatibility (#131568)
See #131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131568
Approved by: https://github.com/justinchuby, https://github.com/oulgen, https://github.com/zou3519
2024-07-25 22:24:19 +00:00