Summary:
The old `torch.distributed` will go to `torch.distributed.deprecated`
The old DDP will go to `torch.nn.parallel.deprecated`
Now `torch.nn.parallel.DDP` will use c10d DDP
Now `torch.distributed` will use C10d frontend API
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11405
Reviewed By: pietern
Differential Revision: D9733733
Pulled By: teng-li
fbshipit-source-id: d6a3f3e73f8d3a7fcb1f4baef53c78063b8cbb08
Summary:
This commit adds the ``buffers()`` and ``named_buffers()`` methods as
analogues of ``parameters()`` and ``named_parameters()``.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10554
Reviewed By: SsnL
Differential Revision: D9367762
Pulled By: jma127
fbshipit-source-id: f2042e46a7e833dce40cb41681dbd80d7885c74e
This removes volatile from Variable. The functionality is mostly
replaced by a global (thread-local) flag, which is controlled by
torch.set_grad_enabled() and the context manager torch.no_grad().
In C++, the flag is exposed through GradMode::is_enabled() and GradMode::set_enabled()
Fixes#3627
* Implemented NCCL Distributed Backend for PyTorch with new dist APIs
* Let FindNCCL to determine the NCCL version
* Let NCCL2 Backend use ATEN instead deprecated THPP
* Let distributed parallel model use a single reduction thread for NCCL backend
* Caching the sockets, bug fix, refactoring, and addressed Adam's comments
* Make BcastNcclID take a single param and bug fix for all_gather
* Removed barrier function, added warning for users, and not exposing experimental func to users
* Use the simplest single bucket working solution for distriubted data parallel model with rebase
* Cleanup, fixes and further addressed Adam's comments
* Used PySequence_Fast in distributed csrc
* Removed the limitation that each group is only bound to a given device sequence
* Used THPObjectPtr for PySequence_Fast