Commit Graph

320 Commits

Author SHA1 Message Date
c73f5080de Migrating some more callsites (#163580)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163580
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #165582
2025-10-19 15:52:17 +00:00
fdab48a7c1 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 07:36:18 +00:00
24520b8386 Revert "Enable all PIE rules on ruff (#165814)"
This reverts commit c79dfdc6550e872783aa5cb5fc9e86589bf18872.

Reverted https://github.com/pytorch/pytorch/pull/165814 on behalf of https://github.com/cyyever due to Need to cover more files ([comment](https://github.com/pytorch/pytorch/pull/165814#issuecomment-3417931863))
2025-10-18 07:21:08 +00:00
c79dfdc655 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 06:40:12 +00:00
c9b2a09530 [export] Turn on install_free_tensors flag (#164691)
The final step in removing the discrepancy between
torch.compile(fullgraph=True) and torch.export(strict=True).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164691
Approved by: https://github.com/avikchaudhuri
2025-10-14 15:33:50 +00:00
fa3916f466 Revert "[export] Turn on install_free_tensors flag (#164691)"
This reverts commit 220a34118f40fab4f3f517556d6e1434139a1590.

Reverted https://github.com/pytorch/pytorch/pull/164691 on behalf of https://github.com/seemethere due to Breaks some internal things, both me and author agreed that revert was the best course of action ([comment](https://github.com/pytorch/pytorch/pull/164691#issuecomment-3400013759))
2025-10-14 03:58:12 +00:00
1803d40c99 Reapply "[export] Turn on install_free_tensors flag (#164691)" (#165353)
This reverts commit 9166f6120f63e2d5d76e6ccdbfccb8d6e41cbb43.

Reverted https://github.com/pytorch/pytorch/pull/165353 on behalf of https://github.com/seemethere due to This is causing merge conflicts since a dependent PR wasn't reverted ([comment](https://github.com/pytorch/pytorch/pull/165353#issuecomment-3400006587))
2025-10-14 03:52:50 +00:00
9166f6120f Revert "[export] Turn on install_free_tensors flag (#164691)" (#165353)
This reverts commit 220a34118f40fab4f3f517556d6e1434139a1590.

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165353
Approved by: https://github.com/seemethere
2025-10-13 23:40:11 +00:00
220a34118f [export] Turn on install_free_tensors flag (#164691)
The final step in removing the discrepancy between
torch.compile(fullgraph=True) and torch.export(strict=True).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164691
Approved by: https://github.com/avikchaudhuri
2025-10-11 04:26:09 +00:00
7f2a902ea2 more sizelike deprecation (#164889)
remove expext_size c++ bindings and usages

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164889
Approved by: https://github.com/mlazos
ghstack dependencies: #164884, #164885, #164886, #164887, #164888
2025-10-10 03:45:06 +00:00
34ac9b61cb Revert "[export] Turn on install_free_tensors flag (#164691)"
This reverts commit 0e9b3a772ab96e998ab85591d5b2a9c1d41bacb0.

Reverted https://github.com/pytorch/pytorch/pull/164691 on behalf of https://github.com/izaitsevfb due to breaks tests internally, author asked to revert, see [D84230990](https://www.internalfb.com/diff/D84230990) ([comment](https://github.com/pytorch/pytorch/pull/164691#issuecomment-3387718323))
2025-10-09 22:53:50 +00:00
0e9b3a772a [export] Turn on install_free_tensors flag (#164691)
The final step in removing the discrepancy between
torch.compile(fullgraph=True) and torch.export(strict=True).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164691
Approved by: https://github.com/avikchaudhuri
ghstack dependencies: #164721
2025-10-09 03:25:15 +00:00
5ed4270440 remove more no longer needed torch._check_is_size calls 1 (#164630)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164630
Approved by: https://github.com/Skylion007
ghstack dependencies: #164627
2025-10-04 22:06:04 +00:00
02715d0876 [BE][5/6] fix typos in test/ (test/dynamo/) (#157639)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/157639
Approved by: https://github.com/yewentao256, https://github.com/jansel
ghstack dependencies: #157638
2025-07-06 06:34:25 +00:00
48e7b62d3a [dynamo] Add immutable pytree to trace_rules (#156772)
Fixes https://github.com/pytorch/pytorch/issues/155426

Pull Request resolved: https://github.com/pytorch/pytorch/pull/156772
Approved by: https://github.com/williamwen42
2025-06-25 20:08:47 +00:00
640f5a7090 [dynamo] Support builtin bool on non-constant VTs (#155863)
In practice `bool(...)` is either constant folded by Dynamo or used for
branching (so most of its emulation logic lived in
`InstructionTranslator.generic_jump`.

This patch adds a dedicated `bool` hanlder (only for symbolic
bool/int/float for now), and fixes #136075.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155863
Approved by: https://github.com/williamwen42
2025-06-23 15:53:15 +00:00
463fe36532 fix error message on specialization with Dim.DYNAMIC (#155738)
Previously specialization error messages would render sources that were pretty far from source-code names. E.g., given args named `x, y, zs`, the source for `y.size()[0]` would be rendered as `args[0][1].size()[0]`.

This is because we created artificial local names following `(args, kwargs)` structure instead of reusing signatures. This PR fixes that situation.

Basically we map prefixes of key paths that correspond to original arg names to root sources corresponding to those names; the rest of the key paths hang from these root sources.

Differential Revision: [D76461391](https://our.internmc.facebook.com/intern/diff/D76461391/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155738
Approved by: https://github.com/bobrenjc93
2025-06-13 10:33:46 +00:00
68034198e5 [HOP] Mutation and alias rework (#146658)
This PR reworks the way the input mutations and various aliases are checked

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146658
Approved by: https://github.com/ydwu4
2025-05-18 08:05:22 +00:00
3fe42d4d5d [export] Dynamo symint support (#152677)
Basically adds native _IntWrapper support to dynamo. Here's my process of trying to make symint input support work on dynamo, and how I ended up with this approach [(doc)](https://docs.google.com/document/d/1GvNRQd8BnxlMay_hrEVgEta6VUeUW_hcFeRuB7q1nDY/edit?tab=t.0).

What I did was, before passing inputs to dynamo.export, I first wrap them with a class, `_IntWrapper`. When processing dynamic shapes, I will then add the corresponding dynamic shape specification to the `dynamism` field stored on the `_IntWrapper`. If there is no dynamism specified, then this will get unwrapped back to an integer. When dynamo tracing, when we encounter an `_IntWrapper`, we will convert this to a symint if the dynamism was specified as `Dim.DYNAMIC/AUTO`. Dynamo will then trace a graph that contains symint inputs, which will get passed to AOTAutograd and so on.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152677
Approved by: https://github.com/pianpwk
2025-05-16 07:51:50 +00:00
ceb009baee [map] always turn on dynamo for map (#152041)
Summary:
X-link: https://github.com/pytorch/executorch/pull/10409

Reland D72896450

Make map consistent with other control flow ops. After the change, map is able to support accessing closures in the map fn.

Test Plan: See existing tests.

Reviewed By: zou3519

Differential Revision: D73138427

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152041
Approved by: https://github.com/zou3519
2025-05-12 02:10:08 +00:00
e5ea7911ea [ez] Make relaxed constraint error message more user friendly (#151407)
Fixes #151356

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151407
Approved by: https://github.com/Skylion007
2025-04-30 03:51:50 +00:00
4504910843 Revert "[ez] Make relaxed constraint error message more user friendly (#151407)"
This reverts commit e0f05229e9ff84aa6138df2bd51f5044bc743afb.

Reverted https://github.com/pytorch/pytorch/pull/151407 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking internally (see D73198095). To validate your fixes internally, you can follow the instructions here: https://fburl.com/fixing-ghfirst-reverts. ([comment](https://github.com/pytorch/pytorch/pull/151407#issuecomment-2821819654))
2025-04-22 16:12:42 +00:00
e0f05229e9 [ez] Make relaxed constraint error message more user friendly (#151407)
Fixes #151356

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151407
Approved by: https://github.com/Skylion007
2025-04-17 06:43:10 +00:00
a582f04608 Revert "[ez] Make relaxed constraint error message more user friendly (#151407)"
This reverts commit bc934f57d7c14b07e7497eb72a90d893270bc662.

Reverted https://github.com/pytorch/pytorch/pull/151407 on behalf of https://github.com/izaitsevfb due to breaks export tests ([comment](https://github.com/pytorch/pytorch/pull/151407#issuecomment-2810716135))
2025-04-16 20:40:22 +00:00
bc934f57d7 [ez] Make relaxed constraint error message more user friendly (#151407)
Fixes #151356

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151407
Approved by: https://github.com/Skylion007
2025-04-16 17:00:06 +00:00
4a47dd9b3f Revert "[map] always turn on dynamo for map (#150962)"
This reverts commit a72d56cb6be8c6ded5678b0b98003c90fd1b5a71.

Reverted https://github.com/pytorch/pytorch/pull/150962 on behalf of https://github.com/Camyll due to breaking internal builds {SHORT_REASON} ([comment](https://github.com/pytorch/pytorch/pull/150962#issuecomment-2803006282))
2025-04-14 21:09:22 +00:00
a72d56cb6b [map] always turn on dynamo for map (#150962)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150962
Approved by: https://github.com/zou3519
2025-04-11 23:28:06 +00:00
f649ee73ce Use source hashing to generate consistent symbolic ids (#149665)
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows

Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic

Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....

Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.

We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
2025-03-28 05:36:32 +00:00
af7719a2fa Revert "Use source hashing to generate consistent symbolic ids (#149665)"
This reverts commit 1f92348dc6c60e3020a723b37ecb8226cf2480c0.

Reverted https://github.com/pytorch/pytorch/pull/149665 on behalf of https://github.com/malfet due to Broke trunk, see 6eb3c2e282/1 ([comment](https://github.com/pytorch/pytorch/pull/149665#issuecomment-2758578187))
2025-03-27 16:02:27 +00:00
1f92348dc6 Use source hashing to generate consistent symbolic ids (#149665)
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows

Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic

Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....

Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.

We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
2025-03-27 03:39:27 +00:00
0a0a73a9a9 [cond] don't trace fw and bw graph in autograd key (#148930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148930
Approved by: https://github.com/zou3519
2025-03-24 17:07:29 +00:00
34d726011f [dynamo] update data-dependent branching graph break messages (#147912)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147912
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #147494, #147872
2025-02-28 12:30:06 +00:00
4caeede799 [dynamo] more better error messages [3/N] (#147494)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147494
Approved by: https://github.com/jansel, https://github.com/zou3519
2025-02-28 06:23:28 +00:00
824474cb35 [cond] support output sizes mismatch in front end (#147130)
This PR finishes https://github.com/pytorch/pytorch/pull/137615 by addressing the TODOs and comments left there.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147130
Approved by: https://github.com/zou3519
2025-02-25 20:28:41 +00:00
8af31e30d7 [Codemod][AddExplicitStrictExportArg] caffe2/torch (#146439)
Differential Revision: D69068432

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146439
Approved by: https://github.com/avikchaudhuri
2025-02-05 22:56:54 +00:00
99dbc5b0e2 PEP585 update - test (#145176)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145176
Approved by: https://github.com/bobrenjc93
2025-01-22 04:48:28 +00:00
972d4a154d Add facility to run dynamo UTs for non-cuda devices (#140929)
This is in line with changes introduced with https://github.com/pytorch/pytorch/pull/130714, additional files are included to support non-cuda devices.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140929
Approved by: https://github.com/kwen2501, https://github.com/EikanWang, https://github.com/guangyey
2025-01-20 05:56:38 +00:00
cyy
df458be4e5 [4/N] Apply py39 ruff and pyupgrade fixes (#143257)
```torch/fx/passes/annotate_getitem_nodes.py``` was changed to support the new type hinting annotations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143257
Approved by: https://github.com/justinchuby, https://github.com/albanD
2025-01-04 10:47:51 +00:00
5660709856 [hop][BE] unify meta checking with check_meta_consistency (#143545)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143545
Approved by: https://github.com/zou3519
ghstack dependencies: #143105
2025-01-03 19:01:07 +00:00
ba5cacbc17 [Codemod][AddExplicitStrictExportArg] caffe2/test (#143688)
Reviewed By: avikchaudhuri

Differential Revision: D67530154

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143688
Approved by: https://github.com/tugsbayasgalan
2024-12-27 07:58:44 +00:00
d25e6e623f Fix unused Python variables in test/[a-d]* (#134665)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134665
Approved by: https://github.com/albanD
2024-12-13 22:13:12 +00:00
b37cfddeb3 Refactor ShapeGuardPrinter for future C++ addiiton (#140968)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140968
Approved by: https://github.com/anijain2305
ghstack dependencies: #140597
2024-11-27 20:09:58 +00:00
44186a0a4e Move Sympy printers to torch/utils/_sympy/printers.py (#140597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140597
Approved by: https://github.com/ezyang, https://github.com/anijain2305
2024-11-26 18:11:00 +00:00
f23621ec56 Revert "Move Sympy printers to torch/utils/_sympy/printers.py (#140597)"
This reverts commit c25b201583fc28243b87c460a2f18e2531a676e7.

Reverted https://github.com/pytorch/pytorch/pull/140597 on behalf of https://github.com/huydhn due to Trunk is sad again after this lands, this looks like a landrace this time, so please do a rebase ([comment](https://github.com/pytorch/pytorch/pull/140597#issuecomment-2494052978))
2024-11-22 15:43:39 +00:00
c25b201583 Move Sympy printers to torch/utils/_sympy/printers.py (#140597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140597
Approved by: https://github.com/ezyang, https://github.com/anijain2305
2024-11-22 02:04:36 +00:00
225d3f4495 [subclasses] Subclass parameterization to not wrap-unwrap on forward (#140632)
One of the common use cases of tensor Subclasses is to replace all model Parameters with Subclass that provides alternative implementation of common ops. E.g. quantization replaces weights to QuantizedSubclass.

AotAutograd lifts up Parameters to graph arguments and wraps graph execution at runtime with wrapping/unwrapping of those subclasses.

Even if one unwrapping is not critically big ~14us, when we have to unwrap/wrap all linear weights, that could  result in substantial addition to runtime, which can be more than compiled region execution time. E.g. 20 weights * 14us = 0.3ms.

This is parametrization to unwrap tensor subclasses, that is used in torch.ao: https://github.com/pytorch/ao/blob/main/torchao/utils.py#L294

It adds parametrization to unwrap tensor subclasses to plain tensors.
As a result the registered parameters are changed (all registered parameters will become plain tensors) and  state_dict is not compatible before/after transformation.

This transformation is used before dynamo and does breaking changes, so we keep it for user to be used explicitly.

Testing:
```
TORCH_LOGS="graph_code,aot" python test/functorch/test_aotdispatch.py -k test_subclass_parameters
```
```
TORCH_LOGS="graph_code,aot,export" python test/dynamo/test_export.py -k test_subclass_parameters
```

```
TRACED GRAPH
  ===== pre insert_deferred_runtime_asserts __compiled_fn_1 =====
  <eval_with_key>.0 class GraphModule(torch.nn.Module):
     def forward(self, L_self_modules_parametrizations_modules_p1_parameters_original0_: "f32[3, 4]", L_x_: "f32[3, 4]", L_self_modules_parametrizations_modules_p2_parameters_original0_: "f32[3, 4]", L_self_modules_parametrizations_modules_p2_parameters_original1_: "f32[3, 4]"):
         l_self_modules_parametrizations_modules_p1_parameters_original0_ = L_self_modules_parametrizations_modules_p1_parameters_original0_
         l_x_ = L_x_
         l_self_modules_parametrizations_modules_p2_parameters_original0_ = L_self_modules_parametrizations_modules_p2_parameters_original0_
         l_self_modules_parametrizations_modules_p2_parameters_original1_ = L_self_modules_parametrizations_modules_p2_parameters_original1_

          # File: /data/users/ivankobzarev/a/pytorch/torch/testing/_internal/subclasses.py:42 in __tensor_unflatten__, code: return WrapperSubclass(a, outer_size, outer_stride)
         rebuilt: "f32[3, 4]" = torch.testing._internal.subclasses.WrapperSubclass(l_self_modules_parametrizations_modules_p1_parameters_original0_, None, None);  l_self_modules_parametrizations_modules_p1_parameters_original0_ = None

          # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6301 in forward, code: return x + 2 * self.p1 + self.p2
         mul: "f32[3, 4]" = 2 * rebuilt;  rebuilt = None
         add: "f32[3, 4]" = l_x_ + mul;  l_x_ = mul = None

          # File: /data/users/ivankobzarev/a/pytorch/torch/testing/_internal/two_tensor.py:58 in __tensor_unflatten__, code: return TwoTensor(a, b, outer_size, outer_stride)
         rebuilt_1: "f32[3, 4]" = torch.testing._internal.two_tensor.TwoTensor(l_self_modules_parametrizations_modules_p2_parameters_original0_, l_self_modules_parametrizations_modules_p2_parameters_original1_, None, None);  l_self_modules_parametrizations_modules_p2_parameters_original0_ = l_self_modules_parametrizations_modules_p2_parameters_original1_ = None

          # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6301 in forward, code: return x + 2 * self.p1 + self.p2
         add_1: "f32[3, 4]" = add + rebuilt_1;  add = rebuilt_1 = None
         return (add_1,)

ACED GRAPH
==== __compiled_fn_1 =====
data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
  def forward(self, L_self_modules_parametrizations_modules_p1_parameters_original0_: "f32[3, 4][4, 1]cpu", L_x_: "f32[3, 4][4, 1]cpu", L_self_modules_parametrizations_modules_p2_parameters_original0_: "f32[3, 4][4, 1]cpu", L_self_modules_parametrizations_modules_p2_parameters_original1_: "f32[3, 4][4, 1]cpu"):
      l_self_modules_parametrizations_modules_p1_parameters_original0_ = L_self_modules_parametrizations_modules_p1_parameters_original0_
      l_x_ = L_x_
      l_self_modules_parametrizations_modules_p2_parameters_original0_ = L_self_modules_parametrizations_modules_p2_parameters_original0_
      l_self_modules_parametrizations_modules_p2_parameters_original1_ = L_self_modules_parametrizations_modules_p2_parameters_original1_

       # File: /data/users/ivankobzarev/a/pytorch/torch/testing/_internal/subclasses.py:42 in __tensor_unflatten__, code: return WrapperSubclass(a, outer_size, outer_stride)
      rebuilt: "f32[3, 4][4, 1]cpu" = torch.testing._internal.subclasses.WrapperSubclass(l_self_modules_parametrizations_modules_p1_parameters_original0_, None, None);  l_self_modules_parametrizations_modules_p1_parameters_original0_ = None

       # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6301 in forward, code: return x + 2 * self.p1 + self.p2
      mul: "f32[3, 4][4, 1]cpu" = 2 * rebuilt;  rebuilt = None
      add: "f32[3, 4][4, 1]cpu" = l_x_ + mul;  l_x_ = mul = None

       # File: /data/users/ivankobzarev/a/pytorch/torch/testing/_internal/two_tensor.py:58 in __tensor_unflatten__, code: return TwoTensor(a, b, outer_size, outer_stride)
      rebuilt_1: "f32[3, 4][4, 1]cpu" = torch.testing._internal.two_tensor.TwoTensor(l_self_modules_parametrizations_modules_p2_parameters_original0_, l_self_modules_parametrizations_modules_p2_parameters_original1_, None, None);  l_self_modules_parametrizations_modules_p2_parameters_original0_ = l_self_modules_parametrizations_modules_p2_parameters_original1_ = None

       # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6301 in forward, code: return x + 2 * self.p1 + self.p2
      add_1: "f32[3, 4][4, 1]cpu" = add + rebuilt_1;  add = rebuilt_1 = None
      return (add_1,)

.py:381] [0/0] [__aot_joint_graph] TRACED GRAPH
.py:381] [0/0] [__aot_joint_graph]  ===== Joint graph 0 =====
.py:381] [0/0] [__aot_joint_graph]  /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class joint_fn(torch.nn.Module):
.py:381] [0/0] [__aot_joint_graph]     def forward(self, primals, tangents):
.py:381] [0/0] [__aot_joint_graph]         primals_1: "f32[3, 4][4, 1]cpu"; primals_2: "f32[3, 4][4, 1]cpu"; primals_3: "f32[3, 4][4, 1]cpu"; primals_4: "f32[3, 4][4, 1]cpu"; tangents_1: "f32[3, 4][4, 1]cpu"; tangents_2: "f32[3, 4][4, 1]cpu";
.py:381] [0/0] [__aot_joint_graph]
.py:381] [0/0] [__aot_joint_graph]         primals_1, primals_2, primals_3, primals_4, tangents_1, tangents_2, = fx_pytree.tree_flatten_spec([primals, tangents], self._in_spec)
.py:381] [0/0] [__aot_joint_graph]          # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6301 in forward, code: return x + 2 * self.p1 + self.p2
.py:381] [0/0] [__aot_joint_graph]         mul: "f32[3, 4][4, 1]cpu" = torch.ops.aten.mul.Tensor(primals_1, 2);  primals_1 = None
.py:381] [0/0] [__aot_joint_graph]         add: "f32[3, 4][4, 1]cpu" = torch.ops.aten.add.Tensor(primals_2, mul);  primals_2 = mul = None
.py:381] [0/0] [__aot_joint_graph]         add_1: "f32[3, 4][4, 1]cpu" = torch.ops.aten.add.Tensor(add, primals_3);  primals_3 = None
.py:381] [0/0] [__aot_joint_graph]         add_2: "f32[3, 4][4, 1]cpu" = torch.ops.aten.add.Tensor(add, primals_4);  add = primals_4 = None
.py:381] [0/0] [__aot_joint_graph]         return pytree.tree_unflatten([add_1, add_2, None, None, None, None], self._out_spec)
.py:381] [0/0] [__aot_joint_graph]
.py:381] [0/0] [__aot_joint_graph]
graph_code] TRACED GRAPH
graph_code]  ===== tensorify_python_scalars =====
graph_code]  /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class joint_fn(torch.nn.Module):
graph_code]     def forward(self, primals, tangents):
graph_code]         primals_1: "f32[3, 4]"; primals_2: "f32[3, 4]"; primals_3: "f32[3, 4]"; primals_4: "f32[3, 4]"; tangents_1: "f32[3, 4]"; tangents_2: "f32[3, 4]";
graph_code]
graph_code]         primals_1, primals_2, primals_3, primals_4, tangents_1, tangents_2, = fx_pytree.tree_flatten_spec([primals, tangents], self._in_spec)
graph_code]          # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6301 in forward, code: return x + 2 * self.p1 + self.p2
graph_code]         mul: "f32[3, 4]" = torch.ops.aten.mul.Tensor(primals_1, 2);  primals_1 = None
graph_code]         add: "f32[3, 4]" = torch.ops.aten.add.Tensor(primals_2, mul);  primals_2 = mul = None
graph_code]         add_1: "f32[3, 4]" = torch.ops.aten.add.Tensor(add, primals_3);  primals_3 = None
graph_code]         add_2: "f32[3, 4]" = torch.ops.aten.add.Tensor(add, primals_4);  add = primals_4 = None
graph_code]         return pytree.tree_unflatten([add_1, add_2, None, None, None, None], self._out_spec)
graph_code]
graph_code]
.py:463] [0/0] [__aot_graphs] aot_config id: 0, fw_metadata=ViewAndMutationMeta(input_info=[InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=True, keep_input_mutations=True), InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=False, keep_input_mutations=True), InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=True, keep_input_mutations=True), InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=True, keep_input_mutations=True)], output_info=[OutputAliasInfo(output_type=<OutputType.non_alias: 1>, raw_type=<class 'torch.testing._internal.subclasses.WrapperSubclass'>, base_idx=None, dynamic_dims=set(), requires_grad=True, functional_tensor=None)], num_intermediate_bases=0, keep_input_mutations=True, traced_tangents=[WrapperSubclass(TwoTensor(FakeTensor(..., size=(3, 4)), FakeTensor(..., size=(3, 4))))], subclass_inp_meta=[PlainTensorMeta(unwrapped_idx=0, memory_format=None), PlainTensorMeta(unwrapped_idx=1, memory_format=None), PlainTensorMeta(unwrapped_idx=2, memory_format=None), PlainTensorMeta(unwrapped_idx=3, memory_format=None)], subclass_fw_graph_out_meta=[SubclassCreationMeta(flat_tensor_start_idx=0, arg_count=2, included_subclass_symints=True, attrs={'a': SubclassCreationMeta(flat_tensor_start_idx=0, arg_count=2, included_subclass_symints=True, attrs={'a': PlainTensorMeta(unwrapped_idx=1, memory_format=None), 'b': PlainTensorMeta(unwrapped_idx=2, memory_format=None)}, outer_size=torch.Size([3, 4]), outer_stride=(4, 1), meta=None, original_subclass=TwoTensor(FakeTensor(..., size=(3, 4)), FakeTensor(..., size=(3, 4))), original_subclass_type=None, memory_format=None)}, outer_size=torch.Size([3, 4]), outer_stride=(4, 1), meta=None, original_subclass=WrapperSubclass(TwoTensor(FakeTensor(..., size=(3, 4)), FakeTensor(..., size=(3, 4)))), original_subclass_type=None, memory_format=None)], subclass_tangent_meta=[SubclassCreationMeta(flat_tensor_start_idx=0, arg_count=2, included_subclass_symints=False, attrs={'a': SubclassCreationMeta(flat_tensor_start_idx=0, arg_count=2, included_subclass_symints=False, attrs={'a': PlainTensorMeta(unwrapped_idx=1, memory_format=torch.contiguous_format), 'b': PlainTensorMeta(unwrapped_idx=2, memory_format=torch.contiguous_format)}, outer_size=torch.Size([3, 4]), outer_stride=(4, 1), meta=None, original_subclass=TwoTensor(FakeTensor(..., size=(3, 4)), FakeTensor(..., size=(3, 4))), original_subclass_type=None, memory_format=torch.contiguous_format)}, outer_size=torch.Size([3, 4]), outer_stride=(4, 1), meta=None, original_subclass=WrapperSubclass(TwoTensor(FakeTensor(..., size=(3, 4)), FakeTensor(..., size=(3, 4)))), original_subclass_type=None, memory_format=torch.contiguous_format)], is_train=True, traced_tangent_metas=None, num_symints_saved_for_bw=0, grad_enabled_mutation=None, deterministic=False, static_input_indices=[0, 2, 3], tokens={}, indices_of_inputs_that_requires_grad_with_mutations_in_bw=[], bw_donated_idxs=[], num_backward_tokens=0), inner_meta=ViewAndMutationMeta(input_info=[InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=True, keep_input_mutations=True), InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=False, keep_input_mutations=True), InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=True, keep_input_mutations=True), InputAliasInfo(is_leaf=True, mutates_data=False, mutates_metadata=False, mutations_hidden_from_autograd=True, mutations_under_no_grad_or_inference_mode=False, mutation_inductor_storage_resize=False, mutates_storage_metadata=False, requires_grad=True, keep_input_mutations=True)], output_info=[OutputAliasInfo(output_type=<OutputType.non_alias: 1>, raw_type=<class 'torch._subclasses.functional_tensor.FunctionalTensor'>, base_idx=None, dynamic_dims=set(), requires_grad=False, functional_tensor=None), OutputAliasInfo(output_type=<OutputType.non_alias: 1>, raw_type=<class 'torch._subclasses.functional_tensor.FunctionalTensor'>, base_idx=None, dynamic_dims=set(), requires_grad=False, functional_tensor=None)], num_intermediate_bases=0, keep_input_mutations=True, traced_tangents=[], subclass_inp_meta=[PlainTensorMeta(unwrapped_idx=0, memory_format=None), PlainTensorMeta(unwrapped_idx=1, memory_format=None), PlainTensorMeta(unwrapped_idx=2, memory_format=None), PlainTensorMeta(unwrapped_idx=3, memory_format=None)], subclass_fw_graph_out_meta=[PlainTensorMeta(unwrapped_idx=0, memory_format=None), PlainTensorMeta(unwrapped_idx=1, memory_format=None)], subclass_tangent_meta=[], is_train=True, traced_tangent_metas=None, num_symints_saved_for_bw=0, grad_enabled_mutation=None, deterministic=None, static_input_indices=[0], tokens={}, indices_of_inputs_that_requires_grad_with_mutations_in_bw=[], bw_donated_idxs=[], num_backward_tokens=0)
.py:569] [0/0] [__aot_graphs] TRACED GRAPH
.py:569] [0/0] [__aot_graphs]  ===== Forward graph 0 =====
.py:569] [0/0] [__aot_graphs]  /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
.py:569] [0/0] [__aot_graphs]     def forward(self, primals_1: "f32[3, 4][4, 1]cpu", primals_2: "f32[3, 4][4, 1]cpu", primals_3: "f32[3, 4][4, 1]cpu", primals_4: "f32[3, 4][4, 1]cpu"):
.py:569] [0/0] [__aot_graphs]          # File: /data/users/ivankobzarev/a/pytorch/test/functorch/test_aotdispatch.py:6301 in forward, code: return x + 2 * self.p1 + self.p2
.py:569] [0/0] [__aot_graphs]         mul: "f32[3, 4][4, 1]cpu" = torch.ops.aten.mul.Tensor(primals_1, 2);  primals_1 = None
.py:569] [0/0] [__aot_graphs]         add: "f32[3, 4][4, 1]cpu" = torch.ops.aten.add.Tensor(primals_2, mul);  primals_2 = mul = None
.py:569] [0/0] [__aot_graphs]         add_1: "f32[3, 4][4, 1]cpu" = torch.ops.aten.add.Tensor(add, primals_3);  primals_3 = None
.py:569] [0/0] [__aot_graphs]         add_2: "f32[3, 4][4, 1]cpu" = torch.ops.aten.add.Tensor(add, primals_4);  add = primals_4 = None
.py:569] [0/0] [__aot_graphs]         return (add_1, add_2)
.py:569] [0/0] [__aot_graphs]
.py:569] [0/0] [__aot_graphs]
.py:580] [0/0] [__aot_graphs] TRACED GRAPH
.py:580] [0/0] [__aot_graphs]  ===== Backward graph 0 =====
.py:580] [0/0] [__aot_graphs]  /data/users/ivankobzarev/a/pytorch/torch/fx/_lazy_graph_module.py class GraphModule(torch.nn.Module):
.py:580] [0/0] [__aot_graphs]     def forward(self, tangents_1: "f32[3, 4][4, 1]cpu", tangents_2: "f32[3, 4][4, 1]cpu"):
.py:580] [0/0] [__aot_graphs]         return (None, None, None, None)
.py:580] [0/0] [__aot_graphs]
.py:580] [0/0] [__aot_graphs]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140632
Approved by: https://github.com/bdhirsh
2024-11-21 01:09:33 +00:00
701e06b643 Revert "Move Sympy printers to torch/utils/_sympy/printers.py (#140597)"
This reverts commit aefcdb3c9fa787f9d43864f6f99a3590c914324a.

Reverted https://github.com/pytorch/pytorch/pull/140597 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I think it fails inductor/test_padding in trunk. This is a target determination miss and that failed test was not run in your PR ([comment](https://github.com/pytorch/pytorch/pull/140597#issuecomment-2489641453))
2024-11-20 22:13:57 +00:00
aefcdb3c9f Move Sympy printers to torch/utils/_sympy/printers.py (#140597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140597
Approved by: https://github.com/ezyang, https://github.com/anijain2305
2024-11-20 20:26:49 +00:00
a1327fac45 [Dynamo] Replace torch._dynamo.optimize() with torch.compile() [5/N] (#140663)
related commits:

- #139706
- #140238
- #140247
- #140253
- #140663
- #140688

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140663
Approved by: https://github.com/williamwen42
2024-11-18 04:11:56 +00:00
1a2dc89f17 [Dynamo] Allow torch.cond() to handle emply arguments (#138190)
Fixes #138150

```python
import torch

@torch.compile(fullgraph=True)
def foo(x, y, z):
    def f():
        return y + 2

    def g():
        return z + 1

    return torch.cond(x, f, g)

print(foo(torch.zeros(1), torch.ones(1), torch.ones(1))) # tensor([2.])
print(foo(torch.ones(1), torch.ones(1), torch.ones(1))) # tensor([3.])
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138190
Approved by: https://github.com/ezyang, https://github.com/zou3519
2024-10-26 15:26:21 +00:00