Remove enable_fake_mode and exporter_legacy entirely. Even though this is bc breaking, `enable_fake_mode` is no longer compatible with the latest version of transformers, and so it is no longer useful.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161222
Approved by: https://github.com/titaiwangms
Previously, DTensor kept its own copy of the generator state after the
first time a random operator was called on a DTensor. This copy would
evolve independently from the generator outside of DTensor.
After adding support for users to pass a specific generator into
random operators (e.g. `uniform_(..., generator=)`), it was determined
(in discussion on #159991) to change the semantics so that any random
operations performed on DTensor would evolve the state of the publicly
visible generators (either the default one or user-passed one).
The upsides are (1) it is now possible to call torch.manual_seed() at
any point in the program and have a consistent effect on DTensor, (2)
DTensor ops have an observable effect on the generator. The downside is
that users are now responsible for seeding their generator before using
DTensor, ensuring all ranks use the same seed.
Fixes#159991
confirmed docs rendered OK
<img width="897" height="414" alt="image" src="https://github.com/user-attachments/assets/c082f0f0-5447-47aa-834f-65342eb237cd" />
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160482
Approved by: https://github.com/wanchaol
TL;DR: Moving to ScalarType in user extensions and removing deprecated dtypes.
This change _modifies_ the from/to behavior between ScalarType and StableValue! Whereas before, user extensions could only in abstract pass around obfuscated dtypes appearing as int32_ts, now, users can confidently use torch::headeronly::ScalarType in their extensions for major scalar types. This PR enables ABI stability by adding a translation layer through the shim, so that even if the ScalarType enum values change in the future, user extensions need not fear.
Then we add a Tensor scalar_type API which reuses the from/to logic to return to the user a nice ScalarType (vs an abstracted int32_t).
I then changed the test to test the scalar_type API.
This code change required some refactoring because of circular dependencies.
## BC Breaking note
This commit is (narrowly) BC-breaking for unpopular dtypes: `quint*`s, `qint*`s, `Bits*`, `dummy_uint*`s, `dummy_int*`s, `Float8_e8m0fnu`, and `Float4_e2m1fn_x2` in the narrow use case where an extension retrieves a Tensor dtype of the above and passes it into `aoti_torch_call_dispatcher`. As of now, I believe there are 0 users of this use case, so the benefits of this change significantly justify BC-breaking this API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160557
Approved by: https://github.com/mikaylagawarecki, https://github.com/malfet
Existing documentation for torch.finfo().eps is as below:
| eps | float | The smallest representable number such that ``1.0 + eps != 1.0``. |
Proposed documentation for torch.finfo().eps is as below:
| eps | float | The difference between 1.0 and the next smallest representable float larger than 1.0. |
Fixes#160397
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160502
Approved by: https://github.com/ngimel
Adds `OperatorEntry::getComputedKernelForDispatchKey` which returns the KernelFunction corresponding to `OperatorEntry.dispatchTable_[dispatch_ix]` for a given dispatch key
- Specifically it returns a `SafeKernelFunction` that holds a `KernelToken`. This `KernelToken` is registered to the `KernelFunction` in `OperatorEntry.kernels_` and will be invalidated when the `KernelFunction` is destructed (i.e. when the `AnnotatedKernel` that holds this `KernelFunction` is removed from `kernels_`, which happens when the corresponding impl is deregistered).
- `SafeKernelFunction` can be called via `callBoxed`, the validity of the token will be checked before this happens
- `SafeKernelFunction` is pybinded and `getComputedKernelForDispatchKey` is exposed to the frontend ia `torch.library.get_kernel`
Related to https://github.com/pytorch/pytorch/issues/155330
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158393
Approved by: https://github.com/albanD
# Context
This is an extension of #149334.
# This PR
Add support for NUMA bindings with Callable entrypoints, such as `do_train` instead of `/usr/local/bin/python`.
Most notably, we utilize a hack in order to force `Process.start()` to use custom NUMA bindings for each subprocess. Please search for `HACK:` in the code to see a description of the implementation we chose, and #160006 for discussion of alternatives and why this is necessary.
Other changes:
* Remove unnecessary `--preferred` option from all binding strategies. By default, Linux already allocates memory to the NUMA node local to the CPU which triggered the allocation. (See [MPOL_LOCAL](https://man7.org/linux/man-pages/man2/set_mempolicy.2.html).)
* Refactor so that the main API is `maybe_wrap_command_with_numa_bindings`, which computes bindings for a single rank at a time, rather than `maybe_wrap_with_numa_bindings` which computed bindings for all ranks at once. This allowed for more code sharing between `Callable` and `str` entrypoints.
# Test Plan
## Automated
`$ pytest test/test_numa_binding.py`
## Manual
Using [this benchmark,](https://gist.github.com/pdesupinski/bbe01ade455d86e989794f2c612e2d91), ran
```
$ PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -m torch.distributed.run --standalone --nproc-per-node=8 --numa-binding=node --run-path mlp_train.py 2>&1 | tee node_callable.txt && PYTHONUNBUFFERED=1 LOGLEVEL=INFO perf stat -e ls_dmnd_fills_from_sys.dram_io_far,ls_dmnd_fills_from_sys.dram_io_near -- python -u -m torch.distributed.run --standalone --nproc-per-node=8 --run-path mlp_train.py 2>&1 | tee none_callable.txt
```
and observed
* 6.6% remote memory accesses with 'node' bindings
* 11.6% remote without bindings
I also ran similar with `str` entrypoints as before just to be sure it's still working.
NOTE: [--run-path triggers the code to be run inside a `Callable`.](017259f9c6/torch/distributed/run.py (L870))
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160163
Approved by: https://github.com/d4l3k
Refactors how the enablement/disablement of CK Gemms and SDPA works.
- Adds USE_ROCM_CK_GEMM compile flag for enabling CK gemms.
- USE_ROCM_CK_GEMM is set to True by default on Linux
- Updates USE_CK_FLASH_ATTENTION to USE_ROCM_CK_SDPA.
- USE_ROCM_CK_SDPA is set to False by default
- (USE_CK_FLASH_ATTENTION still works for now, but will be deprecated in a future release)
- Prevents these CK libraries from being used unless pytorch has been built specifically with the functionality AND is running on a system architecture that supports it.
- the getters for these library backends will also do some validity checking in case the user used an environment variable to change the backend. If invalid, (i.e. one of the cases mentioned above is false) the backend will be set as the current non-CK default
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152951
Approved by: https://github.com/eqy, https://github.com/jeffdaily, https://github.com/m-gallus
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Co-authored-by: Jithun Nair <jithun.nair@amd.com>
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
Sphinx likes titles and complains about them when they are not there. So adding a title to address this Wartning in the build:
```
WARNING: toctree contains reference to document 'distributed._dist2' that doesn't have a title: no link will be generated
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159385
Approved by: https://github.com/d4l3k
This PR removes the integration point torch.fx had with torch::deploy (and another minor change).
Note: This PR has some broken mypy errors, but I believe those should have been in the code base beforehand, and should be fixed in a separate PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158291
Approved by: https://github.com/albanD
ghstack dependencies: #158290
Options to address the "undocumented python objects":
1. Reference the functions in the .rst via the torch.nn.modules namespace. Note that this changes the generated doc filenames / locations for most of these functions!
2. [Not an option] Monkeypatch `__module__` for these objects (broke several tests in CI due to `inspect.findsource` failing after this change)
3. Update the .rst files to also document the torch.nn.modules forms of these functions, duplicating docs.
#### [this is the docs page added](https://docs-preview.pytorch.org/pytorch/pytorch/158491/nn.aliases.html)
This PR takes option 3 by adding an rst page nn.aliases that documents the aliases in nested namespaces, removing all the torch.nn.modules.* entries from the coverage skiplist except
- NLLLoss2d (deprecated)
- Container (deprecated)
- CrossMapLRN2d (what is this?)
- NonDynamicallyQuantizableLinear
This mostly required adding docstrings to `forward`, `extra_repr` and `reset_parameters`. Since forward arguments are already part of the module docstrings I just added a very basic docstring.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158491
Approved by: https://github.com/janeyx99
Options to address the "undocumented python objects":
1. Reference the functions in the .rst via the `torch.functional` namespace. Note that this changes the generated doc filenames / locations for most of these functions!
2. Document these functions by referencing them from the `torch.` namespace instead, in line with common usage. This would also require setting the `__module__` for these functions and moving entries from `torch.functional`'s `__all__` -> `torch`'s `__all__`, which is BC-breaking.
3. Update the .rst files to also document the `torch.functional` forms of these functions, duplicating docs.
This PR takes option (3) above and:
* Removes all 20 `torch.functional` entries from the doc ignore list
* Removes `torch.functional.align_tensors()` entirely, since we don't want to document it.
* This is technically BC-breaking, although the previous impl simply errored out. This change could be moved to a separate isolated PR for safety.
* Introduces `torch.aliases.md` as a hidden page for the `torch.functional` aliases to the `torch` analogue functions
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158581
Approved by: https://github.com/janeyx99
The MIOpen integration has changed over the years. In the past, the MIOpen default for benchmark was True and if it were set to False it would use MIOpen Immediate Mode. But with #145294 the MIOpen benchmark default changed to False and to activate immediate mode you would set the deterministic flag to True. This has proved too restrictive because benchmark and deterministic flags are independent from immediate mode. Thus, immediate mode needs its own flag. Though MIOpen still masquerades behind torch.backends.cudnn and its flags, it seemed inappropriate to add an miopen-exclusive flag to the set of cudnn flags. This PR adds the first miopen-only flag to control its immediate mode.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158951
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>