Commit Graph

409 Commits

Author SHA1 Message Date
ba3b05fdf3 [1/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort stdlib (#127122)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127122
Approved by: https://github.com/kit1980
2024-05-25 08:25:50 +00:00
c09205a057 Deprecate device-specific GradScaler autocast API (#126527)
# Motivation

## for `torch.amp.GradScaler`,
- `torch.cpu.amp.GradScaler(args...)` is completely equivalent to `torch. amp.GradScaler("cpu", args...)`.
- `torch.cuda.amp.GradScaler(args...)` is completely equivalent to `torch.amp.GradScaler("cuda", args...)`.

So, we intend to depreate them and **strongly recommend** developer to use `torch.amp.GradScaler`.

## for `custom_fwd` and `custom_bwd`,
this is a good solution to make the custom function run with or without effect even in an autocast-enabled region and can be shared by other backends, like CPU and XPU.
So we generalize it to be device-agnostic and put them int `torch/amp/autocast_mode.py` and re-expose to `torch.amp.custom_fwd` and `torch.amp.custom_bwd`. Meanwhile, we deprecate `torch.cuda.amp.custom_fwd` and `torch.cuda.amp.custom_bwd`.

# Additional Context
Add UT to cover the deprecated warning.
No need for more UTs to cover the functionality of `torch.amp.custom_f/bwd`, the existing UTs that previously covered the functionality of `torch.cuda.amp.custom_f/bwd` can cover them.
To facilitate the review, we separate these code changes to two PRs. The first PR cover `torch.amp.GradScaler`. The follow-up covers `custom_fwd` and `custom_bwd`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126527
Approved by: https://github.com/jgong5, https://github.com/gujinghui, https://github.com/janeyx99, https://github.com/EikanWang
2024-05-25 06:41:34 +00:00
1e818db547 [torchbench] Fix torchao benchmarking script (#126736)
As the title says.

Test Plan:

```
python benchmarks/dynamo/torchbench.py --only BERT_pytorch --bfloat16 --quantization int8dynamic --performance --inference --print-memory

cuda eval  BERT_pytorch
[XZ Debug] Torch grad status: False
memory: eager: 0.82 GB, dynamo: 0.92 GB, ratio: 0.89
running benchmark: 100%
1.001x
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126736
Approved by: https://github.com/jerryzh168, https://github.com/huydhn
2024-05-21 23:15:12 +00:00
2068dadbe8 [torchbench] Add torchao to PT2 Benchmark Runner (#126469)
Summary:
X-link: https://github.com/pytorch/benchmark/pull/2268

Support torchao performance and accuracy tests in PT2 Benchmark Runner, using the inductor backend as the baseline.

Test Plan:
```
$ buck2 run mode/opt //caffe2/benchmarks/dynamo:torchbench -- --only BERT_pytorch --bfloat16 --quantization int8dynamic --performance --inference --print-memory

loading model: 0it [00:50, ?it/s]
cuda eval  BERT_pytorch
memory: eager: 0.75 GB, dynamo: 0.75 GB, ratio: 1.00
running benchmark: 100%
1.003x
```

Reviewed By: jerryzh168

Differential Revision: D57463273

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126469
Approved by: https://github.com/huydhn
2024-05-20 17:53:44 +00:00
81277baa0c Remove removed ruff rule TRY200 (#126256)
My TOML linter is complaining that "TRY200" is not acceptable for the `tool.ruff.lint` schema.

From the ruff docs: https://docs.astral.sh/ruff/rules/reraise-no-cause/

> This rule has been removed and its documentation is only available for historical reasons.
>
> This rule is identical to [B904](https://docs.astral.sh/ruff/rules/raise-without-from-inside-except/) which should be used instead.

and we are currently explicitly ignoring B904.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126256
Approved by: https://github.com/Skylion007
2024-05-17 16:31:05 +00:00
5756b53dd8 [XPU] call empty_cache for dynamo tests (#126377)
When running a batch of models, lacking `empty_cache()` would result in OOM for subsequent models.

This PR unifies the `empty_cache` call for both CUDA and XPU.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126377
Approved by: https://github.com/EikanWang, https://github.com/guangyey, https://github.com/desertfire
2024-05-17 06:05:51 +00:00
c87c39d935 [benchmarking] Suppress csv creation on cold-start phase of --warm-start-latency (#125953)
Summary: It seems that most (all?) of our utilities for examining benchmark output expect single-line entries per benchmark. The way the --warm-start-latency flag is currently implemented, it means that we'll see two entries for every benchmark run (one for the warm-up run and one for the actual run). This PR adds a --disable-output flag that we can use for the first run to suppress populating the csv. This way, the existing utilities like `benchmarks/dynamo/check_accuracy.py` will function without any changes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125953
Approved by: https://github.com/desertfire
ghstack dependencies: #125917
2024-05-15 05:32:06 +00:00
9f0d3f71c9 Adjust number of repeats when using --warm-start-latency benchmark flag (#125917)
Summary: In --warm-start-latency mode, we can just perform the cache-warmup run once instead of whatever was provided with --repeat

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125917
Approved by: https://github.com/desertfire
2024-05-15 05:32:06 +00:00
966ebd2e24 Add --warm-start-latency to benchmark harness (#125353)
Summary: This change introduces a new flagg to perform a "warm start" test from the benchmark harness. The idea is to test a model twice: first with a fresh inductor cache (i.e., a "cold start"), and then a second run in a fresh process with the cache available (i.e. a "warm start"). We can later add this mode to CI runs to collect compile times for warm start.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125353
Approved by: https://github.com/eellison, https://github.com/desertfire
2024-05-09 21:12:15 +00:00
d17be10df1 make torch.amp.autocast more generic (#125103)
# Motivation
As discussed in [#124479](https://github.com/pytorch/pytorch/pull/124479), `torch.amp.autocast` can NOT be completely equivalent to `torch.cuda.amp.autocast` and `torch.cpu.amp.autocast` since `torch.amp.autocast` has NOT the default `dtype` for CPU (`torch.bfloat16` by default) and CUDA (`torch.float16` by default) respectively. We would like `torch.amp.autocast` to be more generic to help the developer/customer write the device-agnostic code. Because there are not enough reasons to add device-specific autocast `torch.xxx.amp.autocast` for each device backend.

# Solution
When `None` is passed to `dtype`, we should use `torch.get_autocast_dtype` to get the related dtype for each backend. Meanwhile, `torch.get_autocast_dtype` is necessary to be supported in JIT path for BC.

# Additional Context
With this PR, `torch.amp.autocast(device_type='cuda')` is equivalent to `torch.cuda.amp.autocast`.
Add two new UTs to cover this change in eager and jit path respectively.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125103
Approved by: https://github.com/albanD, https://github.com/jgong5, https://github.com/gujinghui
2024-05-08 12:13:26 +00:00
a3d97f6ce4 [ONNX] Benchmark onnx export w/ ort fusions (#125700)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125700
Approved by: https://github.com/thiagocrepaldi
2024-05-08 01:10:05 +00:00
f04c8471a4 [dynamo][prepare for nn module guards] Guard nn modules for a few benchmarks (#125324)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125324
Approved by: https://github.com/jansel
ghstack dependencies: #125439, #125421, #124522
2024-05-04 22:08:56 +00:00
e93b57a570 Add propagate_real_tensors mode for unbacked (#125115)
A common complaint when working with data-dependent code in PyTorch is that it's hard to tell how far you are from the finish line: every time a GuardOnDataDependentSymNode error is hit, you have to somehow fix or workaround it to see the next one.

This PR adds a new mode `torch._functorch.config.fake_tensor_propagate_real_tensors` which modifies fake tensors to also propagate real tensors. This means that when we try to guard on a data-dependent SymNode, we can actually produce a real result. We also produce a warning which you should consult to figure out what the crux points are.

I ran this on vision_maskrcnn. In the baseline (without this mode), the model has 27 graph breaks, resulting in 40 graphs. With this mode on, the model has only 11 graph breaks, resulting in 15 graphs (the remaining graph breaks are due to missing functionality for item() on float tensor and some other Dynamo missing features.) You get a list of things that would have errored like this:

```
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Max(1, u1) < 2) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u1), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u1), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Ne(Max(1, u1), 1)) -> False
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Max(1, u0) < 2) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u0), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u0), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Ne(Max(1, u0), 1)) -> False
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Max(1, u1) < 2) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u1), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u1), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Ne(Max(1, u1), 1)) -> False
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Max(1, u0) < 2) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u0), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u0), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Ne(Max(1, u0), 1)) -> False
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Max(1, u1) < 2) -> False
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u1), 1)) -> False
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Ne(Max(1, u1), 1)) -> True
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Max(1, u0) < 2) -> False
WARNING:torch.fx.experimental.symbolic_shapes:propagate_real_tensors evaluate_expr(Eq(Max(1, u0), 1)) -> False
```

Potential later follow ups:

* Improve the warning messages (in particular, should provide user frames)
* GC real tensors when they are no longer needed by tracing. Right now, this will use A LOT of memory, equal to as if your GC was broken and every intermediate tensor was kept live

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125115
Approved by: https://github.com/IvanKobzarev
2024-05-02 15:28:26 +00:00
e3b9b71684 [BE]: Ruff - TRY401 - Avoid verbose exception logging (#125126)
Don't bother logging exception obj explicitly with logger, it's captured anyway and would generate verbose outputs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125126
Approved by: https://github.com/ezyang
2024-04-28 21:44:33 +00:00
3d8585e501 [XPU] Add manual_seed and synchronize method (#124709)
This PR set the following device-specific settings for xpu(Intel GPU) specific:
1. Set the manual seed for xpu
2. Set the synchronization method for xpu

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124709
Approved by: https://github.com/EikanWang, https://github.com/desertfire
2024-04-26 12:32:12 +00:00
14430564ce [cudagraphs] add cudagraph_skips counter (#124804)
used in tests and benchmark csv

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124804
Approved by: https://github.com/eellison
ghstack dependencies: #119729, #124700
2024-04-26 03:22:29 +00:00
154157416c Revert "[cudagraphs] add cudagraph_skips counter (#124804)"
This reverts commit fdad16b85108209bc021107f312f4b221422a012.

Reverted https://github.com/pytorch/pytorch/pull/124804 on behalf of https://github.com/jeanschmidt due to one PR in this stack seems to have broken linux pull cuda12 tests ([comment](https://github.com/pytorch/pytorch/pull/119729#issuecomment-2076750595))
2024-04-25 09:26:25 +00:00
fdad16b851 [cudagraphs] add cudagraph_skips counter (#124804)
used in tests and benchmark csv

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124804
Approved by: https://github.com/eellison
ghstack dependencies: #119729, #124700
2024-04-25 03:38:09 +00:00
000d55870a Enable in oss (#124031)
Biggest movement is 4% HF inference, 9% TIMM inference. Note, this is max-autotune mode so we are more tolerant of compilation increases. We could improve compilation time by limiting:
```
# Take how many of the top triton kernels to benchmark epilogue
max_epilogue_benchmarked_choices = 3
```

There is a hf_Whisper failure which you can repro on main without this stack with `TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_BACKENDS=TRITON TORCHINDUCTOR_MAX_AUTOTUNE=1 python benchmarks/dynamo/torchbench.py --backend inductor --amp --accuracy --training --only hf_Whisper`. When you turn off epilogue fusion, it fixes the accuracy. I bisected the failure to an epilogue, however when you compare the results of that epilogue with the corresponding separate kernels the results of the output are equivalent.

Inference:

<img width="1686" alt="image" src="https://github.com/pytorch/pytorch/assets/11477974/0b240080-cd33-4c08-89d3-583103b1fb0c">

Training:

<img width="1329" alt="Screenshot 2024-04-16 at 6 16 30 PM" src="https://github.com/pytorch/pytorch/assets/11477974/db0afcc9-7288-4c27-84ce-4fc1a5690788">

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124031
Approved by: https://github.com/Chillee, https://github.com/shunting314
ghstack dependencies: #124030, #122642, #123229, #122825
2024-04-19 20:28:55 +00:00
290e3e7abb Add ability to save TORCH_COMPILE_DEBUG logs for CI failures (#124408)
Summary: The intent is that we can whitelist certain benchmarks to a) enable TORCH_COMPILE_DEBUG=1, and b) save the generated artifacts in test/debug in case of a failure. Via the rules in action.yml, we can then upload test/debug/ to S3 whenever it exists. I chose to introduce a new directory (test/debug/) rather than using an existing one (e.g., test/test-reports/), because these don't seem like test reports and we can later add other debug-related artifacts if we find it useful. For example, we might want to later explore including the inductor cache artifacts.

Test Plan:
See artifacts generated when I force a failure: https://hud.pytorch.org/pr/124234
Specifically: https://gha-artifacts.s3.amazonaws.com/pytorch/pytorch/8729891826/1/artifact/debug-test-inductor_torchbench-2-2-linux.g5.4xlarge.nvidia.gpu_23953679574.zip

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124408
Approved by: https://github.com/desertfire
2024-04-19 02:46:00 +00:00
7c94652d7d [benchmarks] Add --use-warm-peak-memory (#124326)
Measuring peak memory on the first run can capture cases where compiled artifacts leak into runtime, but it also introduces a lot of noise from cudnn/triton autotuning which generally uses as much memory as it can. Setting this flag as a default will need some discussion, so I will only add it to unblock compiled backward benchmarking (where all autotuning memory use is exposed)

```
e.g. resnet50
# without --warm-peak-memory
memory: eager: 1.95 GB, dynamo: 6.68 GB, ratio: 0.29

# with --warm-peak-memory
memory: eager: 1.96 GB, dynamo: 2.06 GB, ratio: 0.95
```

![image](https://github.com/pytorch/pytorch/assets/9547562/36cd8687-a7f7-4ec6-b989-7e1263aa7d37)

This issue may also affect large models. Here's an example case of cudnn_convolution_backward autotuning allocating 30GB to tune a model otherwise using 5GB memory:
![image](https://github.com/pytorch/pytorch/assets/9547562/4e544b11-3579-4c69-811a-91d896f1ba66)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124326
Approved by: https://github.com/jansel
ghstack dependencies: #119411
2024-04-18 02:57:01 +00:00
0ddd17bdc6 [benchmarks] Add --snapshot-memory to get memory pickles for eager vs compiled (#119411)
creates memory snapshot pickles e.g.
```
inductor_no_cudagraphs_torchbench_amp_training_cuda_performance_compiled_pytorch_stargan.pickle
inductor_no_cudagraphs_torchbench_amp_training_cuda_performance_eager_pytorch_stargan.pickle
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119411
Approved by: https://github.com/jansel
2024-04-18 02:57:01 +00:00
93e249969b [BE] enable ruff rule RSE and remove useless parentheses in raise statements (#124261)
Remove useless parentheses in `raise` statements if the exception type is raised with no argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124261
Approved by: https://github.com/albanD
2024-04-17 19:29:34 +00:00
ec00daf4f1 [aotinductor] Fix benchmarks with self.autocast for run_performance_test (#123699)
## Pitch
Similar to https://github.com/pytorch/pytorch/pull/110490 which fixes the `self.autocast` in the `check_accuracy` function, this PR fixes the `self.autocast` context in the `run_performance_test` function.

## Description
The code inside `check_accuracy` after the fix on https://github.com/pytorch/pytorch/pull/110490:
a4a49f77b8/benchmarks/dynamo/common.py (L2490-L2500)

The current code on main branch before this PR in `run_performance_test` does not have the `self.autocast` context:
a4a49f77b8/benchmarks/dynamo/common.py (L2685-L2692)

For eager mode, the `model_iter_fn`  (which is actually [forward_pass](e8ad5460c0/benchmarks/dynamo/huggingface.py (L556-L558))) is used in [warmup](e8ad5460c0/benchmarks/dynamo/common.py (L2690))  and    [speedup_experiment](e8ad5460c0/benchmarks/dynamo/common.py (L648)). The `forward_pass` has the `self.autocast` context thus it could run into BF16 when AMP is on. While for AOTInductor, we will call `export_aot_inductor` in both [warmup](e8ad5460c0/benchmarks/dynamo/common.py (L2695)) and [speedup_experiment](e8ad5460c0/benchmarks/dynamo/common.py (L644-L646)), which doesn't have the `autocast` context thus will always run into FP32.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123699
Approved by: https://github.com/jgong5, https://github.com/desertfire
2024-04-11 01:40:44 +00:00
298171df5c [benchmark] Add namedtuple pytree serialization (#123648)
Fixes https://github.com/pytorch/pytorch/pull/123388#issuecomment-2045289729

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123648
Approved by: https://github.com/desertfire
2024-04-09 22:25:36 +00:00
d78991a738 Make torch_geometric models compatible with export (#123403)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123403
Approved by: https://github.com/angelayi
2024-04-05 20:58:16 +00:00
8c7d8f0ff2 Revert "Make torch_geometric models compatible with export (#123403)"
This reverts commit 2ffab6e663b9c6951048b8c8ba82d2cc5ca5c2fc.

Reverted https://github.com/pytorch/pytorch/pull/123403 on behalf of https://github.com/atalman due to Related issue basic_gnn_gin ([comment](https://github.com/pytorch/pytorch/pull/123403#issuecomment-2039817292))
2024-04-05 13:34:41 +00:00
2ffab6e663 Make torch_geometric models compatible with export (#123403)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123403
Approved by: https://github.com/angelayi
2024-04-05 05:26:01 +00:00
482d8bf1ea [aoti] Change aot_compile callsites (#122225)
Summary:
Replacing `torch._export.aot_compile` callsites with
```
ep = torch.export._trace._export(.., predispatch=True)   # Traces the given program into predispatch IR
so_path = torch._inductor.aot_compile_ep(ep, ...)  # Takes an exported program and compiles it into a .so
```

This allows us to explicitly split up the export step from AOTInductor. We can later modify tests to do `export + serialize + deserialize + inductor` to mimic internal production use cases better.

Test Plan: CI

Differential Revision: D54808612

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122225
Approved by: https://github.com/SherlockNoMad, https://github.com/khabinov
2024-03-29 21:34:20 +00:00
ba69dc6675 [Easy] add option to print compilation time (#121996)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121996
Approved by: https://github.com/davidberard98
2024-03-18 22:42:41 +00:00
cd1751b14f [dynamo] Measure Dynamo cache latency lookup (#121604)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121604
Approved by: https://github.com/jansel
ghstack dependencies: #121614, #121622
2024-03-12 17:09:11 +00:00
ae22bdaefe Update torchbench commit pin, add sam_fast benchmark (#121420)
After this, the sam_fast benchmark can now be run in the pytorch repo:
```
SEGMENT_ANYTHING_FAST_USE_FLASH_4=0 benchmarks/dynamo/torchbench.py --inference --amp --performance --backend=inductor --explain --only sam_fast
```

sam_fast is designed for inference only, with cuda and amp on. The code adds these restrictions to the benchmark.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121420
Approved by: https://github.com/oulgen, https://github.com/msaroufim
2024-03-11 19:48:53 +00:00
ee557d8f61 skip detectron2_fcos_r_50_fpn in dynamic shape test (#120697)
As reported in https://github.com/pytorch/pytorch/issues/119434, `detectron2_fcos_r_50_fpn` failed with dynamic shape testing, we propose to skip the dynamic batch size testing of this model in this PR.

* Error msg is
```
  File "/home/jiayisun/pytorch/benchmarks/dynamo/common.py", line 3877, in run
    assert marked, f"nothing in example_inputs had a dim with {batch_size}"
AssertionError: nothing in example_inputs had a dim with 4
```

* Root Cause is
Benchmark code will only annotate the inputs' dim as dynamic when its size equals to batch size c617e7b407/benchmarks/dynamo/common.py (L3867-L3871). If it fails to find any dim equals to batch size, above error throws.
However, the inputs of `detectron2_fcos_r_50_fpn` are as follows:

```
([{'file_name': '/home/jiayisun/benchmark/torchbenchmark/data/.data/coco2017-minimal/coco/val2017/000000001268.jpg', 'height': 427, 'width': 640, 'image_id': 1268, 'image': tensor([[[147., 124.,  82.,  ...,   3.,   4.,   5.],
         [125., 104.,  65.,  ...,   3.,   3.,   4.],
         [ 87.,  68.,  34.,  ...,   2.,   2.,   2.],
         ...,
         [ 47.,  45.,  41.,  ...,  45.,  45.,  45.],
         [ 46.,  44.,  40.,  ...,  44.,  45.,  46.],
         [ 46.,  44.,  40.,  ...,  43.,  45.,  46.]],

        [[154., 129.,  84.,  ...,   3.,   4.,   5.],
         [133., 110.,  69.,  ...,   3.,   3.,   4.],
         [ 95.,  76.,  43.,  ...,   2.,   2.,   2.],
         ...,
         [ 44.,  42.,  38.,  ...,  34.,  37.,  39.],
         [ 43.,  41.,  37.,  ...,  35.,  39.,  41.],
         [ 43.,  41.,  37.,  ...,  35.,  40.,  43.]],

        [[171., 140.,  85.,  ...,   3.,   4.,   5.],
         [147., 120.,  71.,  ...,   3.,   3.,   4.],
         [103.,  83.,  47.,  ...,   2.,   2.,   2.],
         ...,
         [ 46.,  44.,  40.,  ...,  16.,  20.,  22.],
         [ 45.,  43.,  39.,  ...,  17.,  22.,  26.],
         [ 45.,  43.,  39.,  ...,  18.,  24.,  28.]]])}, ... ],)
```

None of the inputs' dim will equal to input batch size, so I think we may need to skip the dynamic batch size testing for this model.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120697
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/desertfire
2024-03-05 12:12:18 +00:00
368f242e37 Revert "[PT2D] Make the speedup benchmark works with DDP + CompiledAutograd (#120454)"
This reverts commit 8c2e569928a200893fe971e615b82a2f9ce32630.

Reverted https://github.com/pytorch/pytorch/pull/120454 on behalf of https://github.com/desertfire due to breaks nightly dashboard cudagraphs run ([comment](https://github.com/pytorch/pytorch/pull/120454#issuecomment-1975001824))
2024-03-03 02:58:47 +00:00
c4ed456fc3 [inductor] fix accuracy failure for a few models under freezing (#121054)
Fix https://github.com/pytorch/pytorch/issues/120545 . The reason why these models fail accuracy test with freezing is due to the conv-batchnorm fusion. Conv-batchnorm fusion causes relative big numerical churn.

For the failed TIMM models, raising the tolerance to `8 * 1e-2` can make the test pass.

For the failed TB models, the numerical difference is too large. Having a discussion with @eellison , we decided to skip them with freezing for now.

One the other hand, we probably should dig more why the conv-bn fusion cause such large numerical difference.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121054
Approved by: https://github.com/eellison
2024-03-02 04:53:59 +00:00
8c2e569928 [PT2D] Make the speedup benchmark works with DDP + CompiledAutograd (#120454)
With DDP + CompiledAutograd, we could not use the same parallelized model to do the test. This PR copies the model.

Differential Revision: [D54094257](https://our.internmc.facebook.com/intern/diff/D54094257/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120454
Approved by: https://github.com/yf225, https://github.com/xmfan
2024-03-01 08:35:22 +00:00
950b484356 skip three pyhpc models with dynamic shape test (#120599)
As reported in https://github.com/pytorch/pytorch/issues/119434, `pyhpc_isoneutral_mixing`, `pyhpc_equation_of_state` and `pyhpc_turbulent_kinetic_energy` failed with dynamic shape testing, we propose to skip the dynamic batch size testing of these 3 models in this PR.

* Error msg is
```
  File "/localdisk/leslie/torch_inductor_community/pytorch/benchmarks/dynamo/common.py", line 3879, in run
    assert marked, f"nothing in example_inputs had a dim with {batch_size}"
AssertionError: nothing in example_inputs had a dim with 1048576
```

* Root Cause is
  *  Benchmark code will only annotate the inputs' dim as dynamic when its size equals to batch size c617e7b407/benchmarks/dynamo/common.py (L3867-L3871). If it fails to find any dim equals to batch size, above error throws.
  * However, for these 3 models, none of the inputs' dim will equal to input batch size since the [relationship of dim sizes](26b85eadde/torchbenchmark/models/pyhpc_equation_of_state/__init__.py (L12-L16))
  ```
    shape = (
        math.ceil(2 * size ** (1/3)),
        math.ceil(2 * size ** (1/3)),
        math.ceil(0.25 * size ** (1/3)),
    )
  ```
  * Another thing is `pyhpc_isoneutral_mixing`, `pyhpc_equation_of_state` can pass the dynamic batch size accuracy testing, because the batch size has been set to 4 in accuracy testing (c617e7b407/benchmarks/dynamo/common.py (L3456)) and `math.ceil(2 * size ** (1/3))` happens equaling to 4.

* Since the dim sizes of input has above relationship, running the these models in dynamic shape, we may need to annotate `dim[0](s0) = dim[2](s1) * 8`, per the discussion in https://github.com/pytorch/pytorch/issues/117477#issuecomment-1897108756 @avikchaudhuri, looks like we are not expressible for this case. So, I think we may need to skip the dynamic batch size testing for these 3 models.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120599
Approved by: https://github.com/jgong5, https://github.com/desertfire
2024-02-29 00:38:06 +00:00
c617e7b407 Add resnet50/mobilenet_v2_quantized_qat in into deterministic_algorithms exclusive list (#120384)
After PR: https://github.com/pytorch/pytorch/pull/120026, 2 `Torchbench` testcases: `resnet50_quantized_qat` and `mobilenet_v2_quantized_qat` can pass the performance testing but failed with accuracy test. The failure msg is:  `mobilenet_v2_quantized_qat, RuntimeError: quantized_resize_cpu_ does not have a deterministic implementation but you set 'torch.use_deterministic_algorithms(True)'. `

- `torch.use_deterministic_algorithms(True)` only setting for accuracy test. fff9d98e58/benchmarks/dynamo/common.py (L3480)
- However, `quantized_resize_cpu_` only support `nondeterministic_algorithms` because the resized output memory may be uninitialized. fff9d98e58/aten/src/ATen/native/quantized/cpu/TensorOperators.cpp (L85-L87)

Add these 2 models into the deterministic_algorithms exclusive model list in this PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120384
Approved by: https://github.com/desertfire, https://github.com/jgong5
2024-02-26 05:05:43 +00:00
c0e5cca4f8 [DDP] Change the --no-optimize-ddp flag to reflect the latest usage (#119437)
Compiled DDP now has 4 different optimization modes. This PR changes the Dynamo benchmark flag to reflect that change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119437
Approved by: https://github.com/wconstab, https://github.com/xmfan
2024-02-13 16:53:56 +00:00
30f43e3d89 [ONNX][bench] Deepcopy model to another device before export to avoid OOM (#118710)
Prior to onnx export, the model is deepcopied to avoid modifications that may affect later performance profiling. However this increases the memory requirement on the device.
This PR modifies the script to deepcopy and export the model on another device when possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118710
Approved by: https://github.com/thiagocrepaldi
2024-01-31 23:03:39 +00:00
ed0ec2e0be Remove dynamo runner's dependency on distributed build (#117903)
So that we can bisect faster without needing to rebuild distributed module. We remove the annotation to avoid flake8 undefined name lint

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117903
Approved by: https://github.com/xuzhao9
2024-01-24 06:51:14 +00:00
4d625c1c92 [AOTI] Fix a bug in the torch._export.aot_load API (#118039)
Summary:
tree_flatten_spec should use args instead of *args

clone of https://github.com/pytorch/pytorch/pull/117948 but with some fbcode specific changes

Test Plan: CI

Differential Revision: D52982401

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118039
Approved by: https://github.com/angelayi
2024-01-23 14:54:02 +00:00
f302a0d380 Re-enable SGD (#117434)
Re-enables the SGD optimizer now that compile times are more reasonable. [Benchmark run](https://github.com/pytorch/pytorch/actions/runs/7511073761)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117434
Approved by: https://github.com/anijain2305, https://github.com/janeyx99
2024-01-19 04:28:50 +00:00
26956980c6 [AOTI] Add torch._export.aot_load (#117610)
Summary: Add a torch._export.aot_load API that can load an AOTInductor-compiled model.so into a python executable.

Test Plan: CI

Differential Revision: D52825456

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117610
Approved by: https://github.com/angelayi, https://github.com/khabinov, https://github.com/chenyang78
2024-01-18 15:02:16 +00:00
b0084be114 Revert "Re-enable SGD (#117434)"
This reverts commit e7fac72be75a9fa7a31c6fc8062364fdfc4aaa3a.

Reverted https://github.com/pytorch/pytorch/pull/117434 on behalf of https://github.com/lezcano due to breaks test_profiler.py when run with dynamo ([comment](https://github.com/pytorch/pytorch/pull/117434#issuecomment-1898311961))
2024-01-18 11:37:36 +00:00
e7fac72be7 Re-enable SGD (#117434)
Re-enables the SGD optimizer now that compile times are more reasonable. [Benchmark run](https://github.com/pytorch/pytorch/actions/runs/7511073761)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117434
Approved by: https://github.com/anijain2305, https://github.com/janeyx99
2024-01-18 06:47:15 +00:00
4b25948ee6 Torchbench Dynamo Runner: Enable DDP for perf test and traces (#113332)
- Removes an outdated assert that prevents perf tests from running DDP, we now have single node --multiprocess and perf tests are already wrapping the model using `deepcopy_and_maybe_ddp`
- Append rank name to traces to avoid all ranks trying to create the same file
- Renames `deepcopy_and_maybe_ddp` to `deepcopy_and_maybe_parallelize` to include FSDP

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113332
Approved by: https://github.com/H-Huang, https://github.com/wconstab
2024-01-12 22:41:09 +00:00
88bf84f106 [benchmark] add --compile-autograd to dynamo benchmarks (#117196)
Adds `--compile-autograd` flag to benchmark suite to run accuracy and performance tests. Also adds autograd_captures and autograd_compiles to dynamo stats

e.g. accuracy_inductor.csv
```
dev,name,batch_size,accuracy,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles
cuda,BERT_pytorch,4,pass,2655,2,8,7,1,1
cuda,Background_Matting,4,pass_due_to_skip,0,0,0,0,0,0
cuda,DALLE2_pytorch,0,eager_fail_to_run,0,0,0,0,0,0
cuda,LearningToPaint,4,pass,639,2,8,7,1,1
...
```

e.g. speedup_inductor.csv
```
dev,name,batch_size,speedup,abs_latency,compilation_latency,compression_ratio,eager_peak_mem,dynamo_peak_mem,calls_captured,unique_graphs,graph_breaks,unique_graph_breaks,autograd_captures,autograd_compiles
cuda,hf_T5,8,1.214311,136.236793,88.350570,0.751322,18.754706,24.962275,3298,2,8,8,1,1
cuda,hf_T5,8,1.226645,135.431856,52.461461,1.040973,18.754706,18.016508,795,1,7,7,0,0
...
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117196
Approved by: https://github.com/jansel
2024-01-11 20:12:58 +00:00
7e9cbc6834 [CI] Catch more exception types when running eager in PT2 tests (#117120)
Summary: https://github.com/pytorch/pytorch/actions/runs/7467073391/job/20320251143#step:16:1332 shows a case where model loading fails with KeyError but the error is not logged in the report csv file, which can cause an eager model failure silently ignored in the PT2 integration test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117120
Approved by: https://github.com/huydhn
2024-01-11 17:46:11 +00:00
b8374314cc [AOTI] Update AOTI runner util (#116971)
Summary: Update the runner used in integration tests after https://github.com/pytorch/torchrec/pull/1604

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116971
Approved by: https://github.com/chenyang78
2024-01-09 19:07:54 +00:00