[relanding again after fixing internal build]
Summary:
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Approved by: https://github.com/ezyang
Test Plan:
contbuild & OSS CI, see e444cd24d4
Rollback Plan:
Differential Revision: D80435179
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160869
Approved by: https://github.com/ezyang
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159197
Approved by: https://github.com/ezyang
Reference: https://docs.astral.sh/ruff/formatter/black/#assert-statements
> Unlike Black, Ruff prefers breaking the message over breaking the assertion, similar to how both Ruff and Black prefer breaking the assignment value over breaking the assignment target:
>
> ```python
> # Input
> assert (
> len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
>
> # Black
> assert (
> len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
> # Ruff
> assert len(policy_types) >= priority + num_duplicates, (
> f"This tests needs at least {priority + num_duplicates} many types."
> )
> ```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144546
Approved by: https://github.com/malfet
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127124
Approved by: https://github.com/Skylion007
ghstack dependencies: #127122, #127123
More details further down, but first a more high-level description of "how do we functionalize storage resizing"
Today, dynamo converts `param.untyped_storage().resize_(x)` calls that it sees from fsdp into a custom op, `ops.inductor.resize_storage_bytes_(x)`
So given this setup, there are 3 main cases that I think we want to handle:
(1) graph input starts with a real storage size, gets resized down to zero in the graph
(2) graph input starts with 0 storage size, gets resized up in the graph
(3) graph input starts with 0 storage size, gets resized up and used in some compute, then resized back down to 0
For case (1) we need to emit a `resize_storage_bytes_` at the end of the graph, similar to how we emit `copy_()` for data mutations.
For case (2), we need to emit a `resize_storage_bytes_` in the graph, and we **also** need to emit a `copy_()` (the input had its storage resized up, and filled in with data, which is we need to reflect as an input mutation)
For case (3), the net effect is that the input had no data on entry and exit of the function, so we don't need to emit any mutable ops in the end of the graph.
The main thing to call out is that: we need to write a functionalization rule for `resize_storage_byte_`, (`FunctionalTensorWrapper::storage_resize_()`) and this rule actually does very little. We would like to **not** emit any new ops in the graph (like say, a functional resize op). Instead, we should expect / rely on the fact that any resize up will be immediately followed by a `copy_()`/`foreach_copy_`/`out=` op, that will fill in the data of the tensor. So `FunctionalTensor` can temporarily live in a state where its data is invalid, until the `x.copy_(y)` "updates" its data with the new tensor.
So effectively, all that this rule does is:
(1) it stores metadata on the storage, indicating that the tensor was resized, as well as the updated storage size. We need this info in AOTAutograd, so it knows whether to emit a mutable resize_() op in the graph epilogue
(2) There is also a corner case: if we are resizing down to zero, but our tensor had **previously** had a zero size storage, then we update `value_` to point to the original value of the tensor. The reason this seems safe is because if we have a zero storage sized tensor `x`, and we resize it up, use it in some compute, resize it back down to zero, and use it somewhere, we would want the functional version of this code to use the original `x` after the second resize. For FSDP, this is important because we end up saving parameters (graph inputs) for backward, and we want to make sure that the thing we save (and the output to the forward graph) is the original, zero-storage-sized parameter, and not the "version 2" of the parameter after the first resize_()
I think a good order to look at changes in this PR would be:
(1) `test_aotdispatch.py` shows the 3 main cases I focused on as well as the expected functionalized graphs
(2) In `FunctionalStorageImpl.h/cpp`, I had to add a notion of "original base", and "original/curr_size". The first is so I can re-use the zero-size tensor after multiple resizes, and the second is so I can tell in AOTAutograd whether any resizes canceled each other out into a no-op
(3) FunctionalTensorWrapper.h/cpp has the new resize functionalizion rule + some extra utils
(4) `_functorch/_autograd`: the main changes in this folder were around adding the logic at trace-time to detect when we need to put a resize_() in the graph. I also have some assertions to check that any inputs that experience storage resizing will **always be in the graph** and not the opaque epilogue, and I also limited the resize_() mutation case so that you can only ever start with zero storage, or end with zero storage (you can't do e.g. `torch.ones(2).storage().resize_(3)`), and banned it on tensor subclasses
(5) `fake_tensor.py`/`meta_utils.py`: we now need to be able to fakeify tensors with zero storage, so I added a quick version of it in meta_utils.py. This also.. has ramifications for fake tensor caching that I need to fix (include the storage size on the cache key, maybe?)
------------------
This PR subsumes https://github.com/pytorch/pytorch/pull/120971.
This PR is enough to **almost** get a simple ppFSDP forward pass tracing with a functionalized resize_() properly. It also attempts to do the updated version from @jansel, where we don't have any notion of `resize_()` in the graph at all, post functionalization. It would probably be good to test it with @yf225 's FSDP changes, and see how many of the FX passes it allows us to remove. I think that in theory, it should allow us to remove all FX passes that affect the forward graph / partitioner, **except** the one that forces views to be recomputed in the backward (more details below).
There are a few things worth calling out:
(1) failed attempt at functionalizing `aten.copy_()`. I originally wanted to get a version takes these operations:
```
param.storage().resize_(all_gather_size)
param.copy_(all_gather_buffer)
out = aten.matmul(param, param)
```
and functionalizes them into:
```
out = aten.matmul(all_gather_buffer, all_gather_buffer)
```
This would involve getting functionalization to turn `x.copy_(y)` into a giant no-op that just returns `y`. Unfortunately, we can't actually do this in a reasonable way within functionalization (instead, there's a functional `aten.copy` in the graph - see the test case graph expecttest for details). Why? In order for that transformation to be safe, `x` and `y` need to have the same metadata. However, it's possible for `x` and `y` to be subclasses of different types. This is not something we can easily tell from within functionalization, and would be a layering violation. So for now I'm leaving it to downstream code to optimize away the `aten.copy` (this is already the case today, so I think inductor can handle this)
(2) The forward doesn't **actually** run successfully in this PR (see the `assertRaisesRegex` in the test). Why?
The final forward graph looks like this:
```
def forward(self, primals_1, primals_2):
_foreach_copy = torch.ops.aten._foreach_copy.default([primals_1], [primals_2]); primals_2 = None
getitem = _foreach_copy[0]; _foreach_copy = None
mm = torch.ops.aten.mm.default(getitem, getitem); getitem = None
t_1 = torch.ops.aten.t.default(primals_1); primals_1 = None
return [mm, t_1]
```
Where `primals_1` starts out as a secretly-zero-storage-size parameter, and gets resized up and back down within the forward (these are functionalized away).
Importantly, the matmul happy on the result of the `foreach_copy`, **but** the activation that we save for backward (`t_1`) is the result of transposing the **original parameter** (the zero-storage-size param). This is exactly the optimization in fsdp that allows us to have good peak memory usage.
The problem is that the min-cut partitioner decides to save `t_1` for backward. Running this code in eager breaks, because the kernel for `aten.permute(x)` is not happy when `x` has secretly-zero-sized-storage.
The real problem here is that in eager mode the `permute` kernel runs during the backward, after backward hooks have properly resized the saved activation. Here, we are running the transpose in the forward.
One option would be to turn off the checks in our view kernels and allow them to work on zero-storage-sized tensors, which feels pretty bad. Another option is to tweak the partitioner (or use one of Will's FX passes) to force the partitioner to not save views for backward, and allow the views to be recomputed in the backward. This seems kind of silly, but is also probably harmless.
(3) The backward is still broken. To be fair, this issue is pretty separable from "functionalizing storage resize calls", and can be fixed later (either by a real fix to our tracing infra, or via another hacky FX pass). More description of this problem is described at issue (8) of my PR description in https://github.com/pytorch/pytorch/pull/120971
(4) I only added support for "full graph" resizing: basically, the limited case where a param starts with zero storage size, and gets resized up and back down. I think we can add support for the graph break case, but I think we can keep that add-on separate from this PR unless we need it immediately. I also added asserts so we should fail loudly when we hit this case
(5) I have a change to FakeTensor creation when inputs have zero storage size that.. is probably ok. But I also removed FakeTensor caching on view ops, which I probably need to fix before I can land this PR
(6) I added a notion of "original_base" to `FunctionalStorageImpl`. More details are in the comments, but my rational for this was that we basically need it to ensure that autograd saves the **original**, zero-storage-sized param for backward, after resizing up and back down
(7) I had to update our eager kernels for `aten.copy` and `aten._foreach_copy`, to handle the case where the `self` argument has secretly-zero-storage. Inductor can probably generate correct code for this case, but we need these ops to work properly in this situation for the `aot_eager` backend to do the right thing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122434
Approved by: https://github.com/jansel
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Differential Revision: [D54805279](https://our.internmc.facebook.com/intern/diff/D54805279)
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
Applies PLW0108 which removes useless lambda calls in Python, the rule is in preview so it is not ready to be enabled by default just yet. These are the autofixes from the rule.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113602
Approved by: https://github.com/albanD
The problem:
- The new CustomOp API depends on torchgen.model
- torchgen.model imports `yaml`
- `yaml` is not a PyTorch runtime dependency
To unblock myself, because I'm not sure how long it'll take to
convince people yaml should be a PyTorch runtime dependency
(unless one of you wants to approve #100166), this PR removes the
yaml dependency from torchgen.model.
It does so by splitting torchgen.utils (the offender) into
torchgen.utils (no yaml) and torchgen.yaml (which uses yaml).
Test Plan:
- CI
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100203
Approved by: https://github.com/ezyang, https://github.com/Skylion007
simplify method_def generation
Summary:
This removes some duplication. This was originally done to streamline
a subsequent change, but that change turned out to be
misguided. Nevertheless, this is a nice simplification.
Test Plan:
This should change the code gen by removing some redundant
parentheses. Rely on CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100059
Approved by: https://github.com/ezyang
Summary: Handwritten out ops should have feature parity with the codegend ones. This means they should resize out to the appropriate size. Q. Why are these handwritten instead of codegend anyway? Q2. Wheres a good spot to put the resize and copy helpers since they are reused in the codegend out kernels
Test Plan: ci.
Differential Revision: D42177051
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91194
Approved by: https://github.com/ezyang