Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54470
```
git grep -l 'DefaultBackend' | xargs sed -i 's/DefaultBackend/CompositeExplicitAutograd/g'
```
Plus a quick fixup in native/README.md
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D27253240
Pulled By: ezyang
fbshipit-source-id: 964df951ea8b52fa72937f3cc66aeaf49a702e6f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54466
I had to very carefully audit all the use sites since there are a lot
of other uses of the string Math; I did most of the conversion by
grepping for all occurrences of Math and then doing a search
replace.
I also updated documentation for clarity.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D27253239
Pulled By: ezyang
fbshipit-source-id: afb485d07ff39575742a4f0e1e205179b60bc953
Summary:
This PR moves `DispatchKey::Autograd` to an alias dispatch key mapping to `AutogradCPU, AutogradCUDA, AutogradXLA, AutogradOther, AutogradPrivate*` keys.
A few things are handled in this PR:
- Update alias dispatch key mapping and precompute dispatchTable logic
- Move `Autograd` key from `always_included` set to TensorImpl constructor.
- Update `dummyTensor` constructor to take `requires_grad` as optional argument so that it's closer to the real application in op_registration_test.
- Use `BackendSelect` key for both backend select before and after autograd layer. (1 liner in backend_select codegen)
A few planned followups ordered by priority:
- [cleanup] Update `test_dispatch.py` to include testing `Autograd`.
- [cleanup] Add Math alias key and move catchAll to Math. (to remove 2.2 in `computeDispatchTableEntryWithDebug`)
- [new feature] Add support for Math in native_functions.yaml
- [cleanup] Add iterator like functionality to DispatchKeySet
- [cleanup/large] Only add Autograd backend keys when tensor requires grad. (cc: ljk53 ?)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43070
Reviewed By: ezyang
Differential Revision: D23281535
Pulled By: ailzhang
fbshipit-source-id: 9ad00b17142e9b83304f63cf599f785500f28f71
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40469
- The old testing interface C._dispatch_import was based off the old
c10::import variation, which meant the API lined up in a strange
way with the actual torch/library.h. This diff reduces the
differences by letting you program the Library constructor directly.
- Using this newfound flexibility, we add a test for backend fallbacks
from Python; specifically testing that we disallow registering a
backend fallback twice.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D22236351
Pulled By: ezyang
fbshipit-source-id: f8365e3033e9410c7e6eaf9f78aa32e1f7d55833
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36742
Now, you can define a custom class inside a TORCH_LIBRARY block.
It looks very similar to what you did before. Instead of
```
static auto m = torch::class_<Class>("Namespace", "Class").def("foo", foo);
```
you write
```
TORCH_LIBRARY(Namespace, m) {
m.class_<Class>("Class")
.def("foo", foo);
}
```
All the old usages still work, but at some point we should start
updating the tutorials when we're ready to go 100% live with the
new pybind11 style API.
custom class API previously lived in torch/ folder and in torch
namespace, so for consistency, the new TORCH_LIBRARY also got
moved to torch/library.h The definition of Library::class_ is in the
bottom of that header because I need all of the class_ constructors
available, but there is a circular dependency between the two headers.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D21089648
Test Plan: Imported from OSS
Pulled By: ezyang
fbshipit-source-id: 8d54329c125242605336c22fa1642aae6940b507
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36258
Previous we had a && chaining style API. There are some downsides to
this API:
- It's easy to forget the 'static' qualifier in front, leading to
subtle ODR bugs.
- It is not compatible with torchbind class_ definitions, as these
need multiple levels of chaining. So in practice people end
up having to define multiple static initializers, one per class.
- It's not like pybind11.
- There's no way to conveniently get the file and line number of
the registration, as there is no macro point in the API.
- The old API doesn't really encourage people to put all of their
definitions for a library in one place, and to give a custom
namespace for it. Similarly, the old API wasn't very DRY, because
you had to keep repeating the namespace/dispatch key you
were writing implementations for.
The new API is modeled exactly off of the PYBIND11_MODULE macro:
you write:
```
TORCH_LIBRARY(aten, m) {
m.def("aten::add(Tensor self, Tensor other) -> Tensor");
...
}
```
in a non-chaining fashion, and under the hood the macro expands to
define a function, and define a static initializer that allocates
c10::Library (previously called c10::Module, but we renamed it
to avoid confusion with the existing NN module concept), passes
it to your function, and then retains it for the rest of the lifetime
of the program. Specification of the namespace is mandatory,
and in later commit I plan to make it a hard error to TORCH_LIBRARY
the same library name twice.
If you are specifying an implementation for an existing operator
(e.g., you're the XLA backend, or even if you're just putting
registrations for implementations at the implementation site),
you should use TORCH_LIBRARY_IMPL, which instead takes a backend
argument (instead of namespace) and can be used to specify an
implementation for a backend. Unlike TORCH_LIBRARY, you can do
as many of these as you want for a backend.
This needs updates to the mobile code analyzer.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20929257
Pulled By: ezyang
fbshipit-source-id: ba04d78492e8c93ae7190165fb936f6872896ada
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35398
This disables namespaced c10::import which is broken with custom
mobile op builds. This is to help prevent people from accidentally
breaking the custom mobile build in a mysterious way; if they use
the longform version it will work. Fixing the analyzer is tracked
in https://github.com/pytorch/pytorch/issues/35397
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20680519
Pulled By: ezyang
fbshipit-source-id: a18ac8df7e72bf399807870beedb828131273e48
Summary:
Reland of https://github.com/pytorch/pytorch/pull/35061 ; removed
the get qualified type name magic from debug strings to work around
MSVC 2017 bug.
Main points of the new API:
- You can register implementations (impl) without having to specify a schema.
- Registrations are commutative, so no matter what order your static
initializers run, you end up with the same end result.
op_registration_test.cpp contains a reasonably comprehensive accounting
for the available API surface
How does this implementation proceed? The basic concept is to relax the
internal invariants of Dispatcher data structures to allow the
possibility that a FunctionSchema is not specified in an Operator.
- DispatchKeyExtractor has an uninitialized state where it doesn't look
for dispatch keys in any arguments of the stack. It can have a
schema (de)registered to itself post facto with
registerSchema/unregisterSchema.
- DispatchTable has a new constructor taking only an OperatorName for
the uninitialized state. It can have a schema (de)registered to itself
post facto with registerSchema/unregisterSchema
- OperatorDef maintains counts of both defs and well as defs_and_impls.
defs_and_impls keeps track of the outstanding impl registrations; you
may have impl registrations but no defs. If there are no defs (no
schema), the operator is not returned by findSchema. A new
findOperatorByName fucntion unconditionally returns the OperatorHandle
even if there's no schema. OperatorHandle::hasSchema can be used
to check if the operator has schema.
- Replaced 'registerKernel' with 'registerImpl', which is the new
interface for directly registering kernels without implementations.
- Because 'registerImpl' no longer requires an OperatorHandle, change
'registerDef' to only return a RegistrationHandleRAII. This is marginally
less efficient (since we're doing two hash table lookups on a registration
now), but this won't matter in the long term, and probably doesn't
matter now either.
- Rename registerBackendFallbackKernel to registerFallback (this exposed
a bunch of places where we're improperly directly interfacing with Dispatcher;
we need to add this capability to the true public API)
- All code generated internal registrations are switched to use the new
API. This includes VariableType registrations (which previously
weren't converted) and the mobile autograd stuff
- Switch the new-style def()/impl() APIs to interact directly with Dispatcher,
rather than indirecting through the old API
- We deleted alias analysis kind merging entirely. As a nod to BC, it's
possible to define a full schema with alias analysis kind, and then
later do another full schema def with missing alias analysis kind, but
the opposite direction is not allowed. We can remove this entirely
following the plan at https://github.com/pytorch/pytorch/issues/35040
- Schema matching is moved inside the dispatcher, because we might not
be able to immediately schema match at the point of an impl() (because
we don't have the schema yet). To do this, we store the inferred
function schema inside a KernelEntry, so we can check it when we get
the real schema.
- Registered kernel functions now store a debug string which
can be used to more easily identify them. Tests use this to
distinguish between multiple distinct registrations; regular
invocations get only very basic information.
Because we need our static initializers to work no matter what order
they're run, the testing strategy on this PR is quite involved.
The general concept:
- Bind a (very gimped) version of the dispatcher API from Python,
so that we can easily write a more complex testing harness
using expect tests.
- For series of registrations we want to test, exhaustively
test every possible permutation of registrations (and
deregistrations), and show that the intermediate states
agree no matter what path is taken.
- Intermediate states are rendered using a new dumpState()
debugging method that prints the internal state of the
dispatcher. This method may be generally useful for people
who want to see what's in the dispatcher.
- Simultaneously, add a new invariant testing function which
checks that the internal invariants of the dispatcher are
upheld (so we don't have to print internal implementation
details of the dispatcher)
The testing framework found a few bugs in development. For example,
here is a case where we registered schema too early, before checking
if it was valid:
```
Traceback (most recent call last):
File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch
], raises=True)
File "test/test_dispatch.py", line 135, in commute
results=results, raises=raises)
File "test/test_dispatch.py", line 83, in run_permutation
.format(ctor_order[:i], op_ix))
File "test/test_dispatch.py", line 59, in check_invariants
.format(expected_provenance, actual_provenance)
AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n'
name: test::foo
- schema: (none)
+ schema: test::foo(Tensor x, Tensor y) -> (Tensor)
catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0)
: expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!)
```
There are also C++ smoketests for the API. These tests comprehensively
cover the C++ API surface of the new operator registration API, but
don't check very hard if the API does the right thing (that's what
test_dispatch.py is for)
Some miscellaneous changes which could have been split into other
PRs, but I was too lazy to do so:
- Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName)
- Add cloneWithName functionality to FunctionSchema
- Unconditionally generate schema registration, even when type_method_dispatch
is a dict. The one exception is for manual registrations....
- Add fallback, CppFunction::makeFallthrough and
CppFunction::makeFromBoxedFunction to public API of op_registration, so we can
stop calling internal registerImpl directly
- Add new syntax sugar dispatch_autograd for registering autograd kernels
- Minor OperatorName cleanup, storing OperatorName in DispatchTable
and defining operator<< on OperatorName
- Refactored the op registration API to take FunctionSchema directly.
We now do namespacing by post facto fixing up the OperatorName
embedded in FunctionSchema. This also means that you can
now do torch::import("ns1").def("ns2::blah") and have the ns2
override ns1 (although maybe this is not the correct behavior.)
- New torch::schema public API, for attaching alias analysis kind
annotation kinds. This meant we had to template up some function
signatures which previously took const char*. There's now a nice
comment explaining this strategy.
- torch::import now takes std::string which means we can use
the namespacing from Python
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35629
Differential Revision: D20724551
Pulled By: ezyang
fbshipit-source-id: befa46a1affb4ec4ae1fb39e3564a63695a6ca41
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35061
Main points of the new API:
- You can register implementations (impl) without having to specify a schema.
- Registrations are commutative, so no matter what order your static
initializers run, you end up with the same end result.
op_registration_test.cpp contains a reasonably comprehensive accounting
for the available API surface
How does this implementation proceed? The basic concept is to relax the
internal invariants of Dispatcher data structures to allow the
possibility that a FunctionSchema is not specified in an Operator.
- DispatchKeyExtractor has an uninitialized state where it doesn't look
for dispatch keys in any arguments of the stack. It can have a
schema (de)registered to itself post facto with
registerSchema/unregisterSchema.
- DispatchTable has a new constructor taking only an OperatorName for
the uninitialized state. It can have a schema (de)registered to itself
post facto with registerSchema/unregisterSchema
- OperatorDef maintains counts of both defs and well as defs_and_impls.
defs_and_impls keeps track of the outstanding impl registrations; you
may have impl registrations but no defs. If there are no defs (no
schema), the operator is not returned by findSchema. A new
findOperatorByName fucntion unconditionally returns the OperatorHandle
even if there's no schema. OperatorHandle::hasSchema can be used
to check if the operator has schema.
- Replaced 'registerKernel' with 'registerImpl', which is the new
interface for directly registering kernels without implementations.
- Because 'registerImpl' no longer requires an OperatorHandle, change
'registerDef' to only return a RegistrationHandleRAII. This is marginally
less efficient (since we're doing two hash table lookups on a registration
now), but this won't matter in the long term, and probably doesn't
matter now either.
- Rename registerBackendFallbackKernel to registerFallback (this exposed
a bunch of places where we're improperly directly interfacing with Dispatcher;
we need to add this capability to the true public API)
- All code generated internal registrations are switched to use the new
API. This includes VariableType registrations (which previously
weren't converted) and the mobile autograd stuff
- Switch the new-style def()/impl() APIs to interact directly with Dispatcher,
rather than indirecting through the old API
- We deleted alias analysis kind merging entirely. As a nod to BC, it's
possible to define a full schema with alias analysis kind, and then
later do another full schema def with missing alias analysis kind, but
the opposite direction is not allowed. We can remove this entirely
following the plan at https://github.com/pytorch/pytorch/issues/35040
- Schema matching is moved inside the dispatcher, because we might not
be able to immediately schema match at the point of an impl() (because
we don't have the schema yet). To do this, we store the inferred
function schema inside a KernelEntry, so we can check it when we get
the real schema.
- Registered kernel functions now store a debug string which
can be used to more easily identify them. There's some best
effort stuff based on __FUNCSIG__ but this is only really
capable of reporting types and not function symbols. Tests
use this to distinguish between multiple distinct registrations.
Because we need our static initializers to work no matter what order
they're run, the testing strategy on this PR is quite involved.
The general concept:
- Bind a (very gimped) version of the dispatcher API from Python,
so that we can easily write a more complex testing harness
using expect tests.
- For series of registrations we want to test, exhaustively
test every possible permutation of registrations (and
deregistrations), and show that the intermediate states
agree no matter what path is taken.
- Intermediate states are rendered using a new dumpState()
debugging method that prints the internal state of the
dispatcher. This method may be generally useful for people
who want to see what's in the dispatcher.
- Simultaneously, add a new invariant testing function which
checks that the internal invariants of the dispatcher are
upheld (so we don't have to print internal implementation
details of the dispatcher)
The testing framework found a few bugs in development. For example,
here is a case where we registered schema too early, before checking
if it was valid:
```
Traceback (most recent call last):
File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch
], raises=True)
File "test/test_dispatch.py", line 135, in commute
results=results, raises=raises)
File "test/test_dispatch.py", line 83, in run_permutation
.format(ctor_order[:i], op_ix))
File "test/test_dispatch.py", line 59, in check_invariants
.format(expected_provenance, actual_provenance)
AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n'
name: test::foo
- schema: (none)
+ schema: test::foo(Tensor x, Tensor y) -> (Tensor)
catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0)
: expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!)
```
There are also C++ smoketests for the API. These tests comprehensively
cover the C++ API surface of the new operator registration API, but
don't check very hard if the API does the right thing (that's what
test_dispatch.py is for)
Some miscellaneous changes which could have been split into other
PRs, but I was too lazy to do so:
- Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName)
- Add cloneWithName functionality to FunctionSchema
- Unconditionally generate schema registration, even when type_method_dispatch
is a dict. The one exception is for manual registrations....
- Add fallback, CppFunction::makeFallthrough and
CppFunction::makeFromBoxedFunction to public API of op_registration, so we can
stop calling internal registerImpl directly
- Add new syntax sugar dispatch_autograd for registering autograd kernels
- Minor OperatorName cleanup, storing OperatorName in DispatchTable
and defining operator<< on OperatorName
- Refactored the op registration API to take FunctionSchema directly.
We now do namespacing by post facto fixing up the OperatorName
embedded in FunctionSchema. This also means that you can
now do torch::import("ns1").def("ns2::blah") and have the ns2
override ns1 (although maybe this is not the correct behavior.)
- New torch::schema public API, for attaching alias analysis kind
annotation kinds. This meant we had to template up some function
signatures which previously took const char*. There's now a nice
comment explaining this strategy.
- torch::import now takes std::string which means we can use
the namespacing from Python
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20680520
Pulled By: ezyang
fbshipit-source-id: 5d39a28e4ec7c73fe4b1fb2222e865ab65e188f5