Summary: We want to track how well torch.jit.trace can be converted to export in large scale. As a first step, we log all of torch.jit.trace unittests whether we can convert the traced module to export module OR we can export the model directly
Test Plan: CI
Differential Revision: D57629682
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126900
Approved by: https://github.com/SherlockNoMad
Previously, if someone used `register_fake` to add a fake impl for an
operator defined in C++, we would require them to add a
`m.set_python_module(<module>)` call to C++. This was to avoid
situations where a user imported the C++ operator without importing the
fake impl.
This "breaks" open registration: there's no way to add a fake impl
outside of a repository that defines an operator, so we want to turn
this behavior off by default in open source.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124064
Approved by: https://github.com/albanD
ghstack dependencies: #123937
This PR:
- adds a new torch.library.register_fake and deprecates
torch.library.impl_abstract. The motivation is that we have a lot of
confusion around the naming so we are going to align the naming with
the actual subsystem (FakeTensor).
- renames `m.impl_abstract_pystub("fbgemm_gpu.sparse_ops")` to
`m.has_python_registration("fbgemm_gpu.sparse_ops")`. No deprecation
here yet; I need to test how this works with static initialization.
- Renames a bunch of internals to match (e.g. abstractimplpystub ->
pystub)
I'm scared to rename the Python-side internal APIs (e.g.
torch._library.abstract_impl) because of torch.package concerns. I'll do
that in its own isolated PR next just in case it causes problems.
DEPRECATION NOTE: torch.library.impl_abstract was renamed to to
torch.library.register_fake. Please use register_fake. We'll delete
impl_abstract in a future version of PyTorch.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123937
Approved by: https://github.com/albanD
Summary:
This is a reimplemented version of the FB specific code in https://www.internalfb.com/diff/D54230697
The new strategy is that we unconditionally install an FB handler to trace_log logger (and always set level to DEBUG). When the first log message is emitted, we check the JK/filesystem to see if we should actually do logging. If we decide we don't do logging, we remove the handler from trace_log and are done.
build_only[github-export-checks,executorch,pytorch_benchmark,pytorch_quantization,pytorch_distributed,pytorch_distributed_gpu,pytorch_dynamo_inductor,pytorch_functorch,pytorch_fx2trt,pytorch_diff_train_tests_ads,glow_fb_pytorch_tests,training_platform,training_platform_compatibility,training_toolkit_applications,training_toolkit_examples,training_toolkit_model_optimization,dper3_pytorch,xplat_caffe2,pytorch_dev,android-pytorch-instrumentation-tests,smartpytorchgithub_first_try_merge,frl-target-determinator,f6-buck,training_platform_for_github,sigmoid_cpu,sigmoid_gpu,aiplatform_modelprocessing_for_github,accelerators_workloads_models_slimdsnn,ae_aotinductor_benchmark_test,aps_,aps_deterministic_ne_tests,dper_lib_silvertorch,torchrec,torchrec_fb,deeplearning_aot_inductor]
Test Plan:
sandcastle
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//torchrec/inference/tests:test_single_gpu_executor -- --exact 'torchrec/inference/tests:test_single_gpu_executor - TorchDeployGPUTest.NestedModelSingleGPU'
buck2 test 'fbcode//mode/dev-nosan' fbcode//dper_lib/silvertorch/modules/dynamic_stats/tests:accumulators_test -- --exact 'dper_lib/silvertorch/modules/dynamic_stats/tests:accumulators_test - test_global_fixed_interval_accumulator (dper_lib.silvertorch.modules.dynamic_stats.tests.accumulators_test.GlobalFixedIntervalUnivalentAcculumatorTest)'
```
Also running a test flow with/without JK enabled
Differential Revision: D54275086
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120915
Approved by: https://github.com/yanboliang
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
Summary: As we're growing the user surface of torch.export, we'd like to understand better how people are using our APIs. It's also possible to analyze the usages based on static analysis, but due to the fact that there could be many creative ways to call things in Python, I think just building some logging infra will benefit us in the short term and gain us some insights.
Test Plan:
buck test caffe2/test:test_export
{F1454519846}
Reviewed By: tugsbayasgalan
Differential Revision: D53618220
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119585
Approved by: https://github.com/avikchaudhuri
Summary:
Adds a JK killswitch check and configures the env for enabling pytorch
nccl flight recorder. Note- this only enables recording events in memory, not
dumping them.
Test Plan: CI test
Reviewed By: zdevito
Differential Revision: D52920092
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118451
Approved by: https://github.com/malfet
Summary:
We've made the following changes:
- The new way to use the API is `m.impl_abstract_pystub(module, context)`.
Every subsequent m.def of an op inside the TORCH_LIBRARY block gives
the op the `impl_abstract_pystub`.
- Added a mechanism to determine if an operator was defined in Python or C++.
Library.define in Python appends the op to a global set, which is analogous
to what we do for tracking Library.impl.
- If someone does `torch.library.impl_abstract` in Python for an operator, then
we require that it has an `impl_abstract_pystub` specified and we also check
that the module in the `impl_abstract_pystub` is the same as the module where
the call to `torch.library.impl_abstract` exists.
- Unfortunately we can't check the "context" (which is the buck target on
buck-based systems) because buck sits above us.
bypass-github-export-checks
Test Plan: - existing tests
Differential Revision: D51080493
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113182
Approved by: https://github.com/ezyang
Summary:
We've made the following changes:
- The new way to use the API is `m.impl_abstract_pystub(module, context)`.
Every subsequent m.def of an op inside the TORCH_LIBRARY block gives
the op the `impl_abstract_pystub`.
- Added a mechanism to determine if an operator was defined in Python or C++.
Library.define in Python appends the op to a global set, which is analogous
to what we do for tracking Library.impl.
- If someone does `torch.library.impl_abstract` in Python for an operator, then
we require that it has an `impl_abstract_pystub` specified and we also check
that the module in the `impl_abstract_pystub` is the same as the module where
the call to `torch.library.impl_abstract` exists.
- Unfortunately we can't check the "context" (which is the buck target on
buck-based systems) because buck sits above us.
Test Plan: - existing tests
Differential Revision: D50972148
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112851
Approved by: https://github.com/ezyang
We want users to be able to define custom ops in C++ but put the
abstract impl in Python (since it is easier to write them in Python and
the abstract impl better models device semantics and data-dependent
operators).
`m.impl_abstract_pystub(opname, python_module, context)` declares the
abstract_impl of the operator to exist in the given python module.
When the abstract_impl needs to be accessed (either via FakeTensor or
Meta), and it does not exist, the PyTorch Dispatcher will yell
with a descriptive error message.
Some details:
- We construct a new global AbstractImplPyStub mapping in
Dispatcher.cpp. Read/write to this map is protected by the Dispatcher
lock.
- We add a new Meta Tensor fallback kernel. The fallback errors out if there is
no meta kernel, but also offers a nicer error message if we see that there is
a pystub.
- We create a `torch._utils_internal.throw_abstract_impl_not_imported_error`
helper function to throw errors. This way, we can throw different error
messages in OSS PyTorch vs internal PyTorch. To invoke this from C++, we
added a PyInterpreter::throw_abstract_impl_not_imported_error.
Differential Revision: [D49464753](https://our.internmc.facebook.com/intern/diff/D49464753/)
Differential Revision: [D49464753](https://our.internmc.facebook.com/intern/diff/D49464753)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109529
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
Added two new utils to help with turning python functionalization on in AOTAutograd (next PR):
(1) updated `torch._sync()`. Previously, this API could only handle `torch.Tensor` instances that had a `FunctionalTensorWrapper` TensorImpl. It now needs to handle python `FunctionalTensor`'s. In theory I can probably break BC and change this API (since it's private?), but I decided not to do it in this PR stack do minimize the chance of reverts. Instead of updating that API directly (which is in C++), I just added a python shim that first tries to unwrap the python `FunctionalTensor` if there is one, then calls the existing C++ logic
(2) `mirror_autograd_meta` is now a standalone API that tries to mirror the `requires_grad` and `is_leaf` autograd metadata from one tensor to another. Previously this was hardcoded into `torch._to_functional_tensor()`. But I now need to use it in a more standalone way: later in AOTAutograd when we unwrap and re-wrap a tensor subclasses, we need to manually mirror the autograd metadata from the original to the updated version of the subclass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107917
Approved by: https://github.com/ezyang
ghstack dependencies: #106404
Also not sure if this should be a public function or not. Leaving it private for now but let me know if you prefer for it to be public.
FYI @nikitaved this will logically conflict with your triton kernel PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101420
Approved by: https://github.com/malfet
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59956
Issue #50175. Basically two things need to be checked and are lacking currently:
1. Overload declarations should always have a single `pass` statement as the body.
2. There should be always an implementation provided for decls which doesn't
have the torch.jit._overload decorator. So in this case we need to check
whether we are actually compiling a function body with decorator ahead.
Test Plan:
python test/test_jit.py TestScript.test_function_overloads
Imported from OSS
Reviewed By: gmagogsfm
Differential Revision: D29106555
fbshipit-source-id: 2d9d7df2fb51ab6db0e1b726f9644e4cfbf733d6
Summary:
This PR greatly simplifies `mypy-strict.ini` by strictly typing everything in `.github` and `tools`, rather than picking and choosing only specific files in those two dirs. It also removes `warn_unused_ignores` from `mypy-strict.ini`, for reasons described in https://github.com/pytorch/pytorch/pull/56402#issuecomment-822743795: basically, that setting makes life more difficult depending on what libraries you have installed locally vs in CI (e.g. `ruamel`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59117
Test Plan:
```
flake8
mypy --config mypy-strict.ini
```
Reviewed By: malfet
Differential Revision: D28765386
Pulled By: samestep
fbshipit-source-id: 3e744e301c7a464f8a2a2428fcdbad534e231f2e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51124
Original commit changeset: 1c7133627da2
Test Plan: Test locally with interpreter_test and on CI
Reviewed By: suo
Differential Revision: D26077905
fbshipit-source-id: fae83bf9822d79e9a9b5641bc5191a7f3fdea78d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50458
libinterpreter.so contains a frozen python distribution including
torch-python bindings.
Freezing refers to serializing bytecode of python standard library modules as
well as the torch python library and embedding them in the library code. This
library can then be dlopened multiple times in one process context, each
interpreter having its own python state and GIL. In addition, each python
environment is sealed off from the filesystem and can only import the frozen
modules included in the distribution.
This change relies on newly added frozenpython, a cpython 3.8.6 fork built for this purpose. Frozenpython provides libpython3.8-frozen.a which
contains frozen bytecode and object code for the python standard library.
Building on top of frozen python, the frozen torch-python bindings are added in
this diff, providing each embedded interpreter with a copy of the torch
bindings. Each interpreter is intended to share one instance of libtorch and
the underlying tensor libraries.
Known issues
- Autograd is not expected to work with the embedded interpreter currently, as it manages
its own python interactions and needs to coordinate with the duplicated python
states in each of the interpreters.
- Distributed and cuda stuff is disabled in libinterpreter.so build, needs to be revisited
- __file__ is not supported in the context of embedded python since there are no
files for the underlying library modules.
using __file__
- __version__ is not properly supported in the embedded torch-python, just a
workaround for now
Test Plan: tested locally and on CI with cmake and buck builds running torch::deploy interpreter_test
Reviewed By: ailzhang
Differential Revision: D25850783
fbshipit-source-id: a4656377caff25b73913daae7ae2f88bcab8fd88