This PR applies clang-tidy readability checks to jit sources and all headers in the code base.
`readability-redundant-inline-specifier` is suppressed because it incurs too many changes. `readability-redundant-inline-specifier` is used to detect redundant inline specifiers on function and variable declarations. There are many in-class method definitions that are marked inline.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164652
Approved by: https://github.com/Skylion007
This PR applies clang-tidy readability checks to jit sources and all headers in the code base.
`readability-redundant-inline-specifier` is suppressed because it incurs too many changes. `readability-redundant-inline-specifier` is used to detect redundant inline specifiers on function and variable declarations. There are many in-class method definitions that are marked inline.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/164652
Approved by: https://github.com/Skylion007
This PR:
- moves some of the dtype-string utilities into ScalarType.{h, cpp}
- adds a new utility to get a mapping from dtype name to the C++ dtype
- the perser now checks if the string is a dtype name; if it is then it
pulls the c++ dtype from the mapping.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129189
Approved by: https://github.com/albanD
ghstack dependencies: #129177, #129178, #129179
Summary:
co-dev reland of https://github.com/pytorch/pytorch/pull/124520, which requires
the removal of some executorch tests.
Before this PR, we didn't check that types in a schema were valid. This
is because TorchScript treats unknown types as type variables.
This PR checks types in a schema for the TORCH_LIBRARY APIs. To do this,
we add an `allow_typevars` flag to parseSchema so that TorchScript can
use allow_typevars=True. We also add some error messages for common
mistakes (e.g. using int64_t or double in schema).
Test Plan: Wait for tests
Differential Revision: D57666659
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126861
Approved by: https://github.com/albanD
Before this PR, we didn't check that types in a schema were valid. This
is because TorchScript treats unknown types as type variables.
This PR checks types in a schema for the TORCH_LIBRARY APIs. To do this,
we add an `allow_typevars` flag to parseSchema so that TorchScript can
use allow_typevars=True. We also add some error messages for common
mistakes (e.g. using int64_t or double in schema).
Test Plan:
- new tests
Differential Revision: [D56432690](https://our.internmc.facebook.com/intern/diff/D56432690)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124520
Approved by: https://github.com/albanD
Before this PR, we didn't check that types in a schema were valid. This
is because TorchScript treats unknown types as type variables.
This PR checks types in a schema for the TORCH_LIBRARY APIs. To do this,
we add an `allow_typevars` flag to parseSchema so that TorchScript can
use allow_typevars=True. We also add some error messages for common
mistakes (e.g. using int64_t or double in schema).
Test Plan:
- new tests
Differential Revision: [D56432690](https://our.internmc.facebook.com/intern/diff/D56432690)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124520
Approved by: https://github.com/albanD
As we live in C++17 world
This is a functional no-op, just
- `s/namespace at { namespace native {/namespace at::native {/`
- `s/namespace torch { namespace jit {/namespace torch::jit {/`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92100
Approved by: https://github.com/izaitsevfb
This makes prims look as if they were defined in native_functions.yaml
but they're still all written in Python. You now need to give a full
schema string for your prims. The returned prim object is now
torch.ops.prim overload (prims are not allowed to be overloaded,
so we return the overload, not the overload packet, for speed.)
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77117
Approved by: https://github.com/mruberry, https://github.com/albanD
Summary:
## Original commit message:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73368
debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.
Test Plan:
## Original Test plan
unit test
Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K archive/xl_model_weights
3.7M archive/extra
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K archive/code/__torch__/caffe2/torch/fb
8.0K archive/code/__torch__/caffe2/torch
8.0K archive/code/__torch__/caffe2
20M archive/code/__torch__/torch/fx/graph_module
20M archive/code/__torch__/torch/fx
8.0K archive/code/__torch__/torch/classes
20M archive/code/__torch__/torch
20M archive/code/__torch__
20M archive/code
2.7M archive/constants
35M archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K resaved/extra
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K resaved/code/__torch__/caffe2/torch/fb
8.0K resaved/code/__torch__/caffe2/torch
8.0K resaved/code/__torch__/caffe2
1.3M resaved/code/__torch__/torch/fx/graph_module
1.3M resaved/code/__torch__/torch/fx
8.0K resaved/code/__torch__/torch/classes
1.4M resaved/code/__torch__/torch
1.4M resaved/code/__torch__
1.4M resaved/code
2.7M resaved/constants
13M resaved
[qihan@devvm5585.vll0 ~]$
```
## Additional test:
`buck test mode/dev-tsan //caffe2/benchmarks/static_runtime:static_runtime_cpptest -- --exact 'caffe2/benchmarks/static_runtime:static_runtime_cpptest - StaticRuntime.to'` passes
test jest.fbios.startup_cold_start.local.simulator f333356873 -
Differential Revision: D35196883
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74869
Approved by: https://github.com/gmagogsfm
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73818
These all appear to be defined in libtorch_cpu.so, so they should be marked with TORCH_API. TORCH_API means that these symbols are exported from libtorch_cpu.so and no other libraries. In comparison, C10_EXPORT will export the symbol in _all_ built libraries, if it's available.
I think most of these were fine because most were only defined in cpp files (which would only be included in the targets for one .so file). However, the change in pass_manager.h affects behavior, since the class is defined in the .h file, which could result in two separate implementations of the same static functions. Previously we saw issues on windows with this: https://github.com/pytorch/pytorch/pull/73742
Test Plan: Imported from OSS
Reviewed By: george-qi
Differential Revision: D34698175
Pulled By: davidberard98
fbshipit-source-id: cb871e861cf966bff596cfa8340a32a17fca0b66
(cherry picked from commit 6b9988e5688e6d4a9928c3e331efb74f000a9e4a)
Summary:
This diff is reverting D34455360 (61d6c43864)
D34455360 (61d6c43864) is making the following tests to fail and this revert diff is either the revert of the blame diff or the revert of the stack of diffs that need to be reverted to revert the blame diff
Tests affected:
- https://www.internalfb.com/intern/test/562950004334605/
Multisect link:
https://www.internalfb.com/intern/testinfra/multisect/756170
Test Plan: NA
Reviewed By: zhxchen17
Differential Revision: D34596156
fbshipit-source-id: a465bca0094db3caf6130c80f1ed49eea981359b
(cherry picked from commit ef5e5578c64ce9827570757fb016aafa9c782c6a)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73368
debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.
Test Plan:
unit test
Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K archive/xl_model_weights
3.7M archive/extra
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K archive/code/__torch__/caffe2/torch/fb
8.0K archive/code/__torch__/caffe2/torch
8.0K archive/code/__torch__/caffe2
20M archive/code/__torch__/torch/fx/graph_module
20M archive/code/__torch__/torch/fx
8.0K archive/code/__torch__/torch/classes
20M archive/code/__torch__/torch
20M archive/code/__torch__
20M archive/code
2.7M archive/constants
35M archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K resaved/extra
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K resaved/code/__torch__/caffe2/torch/fb
8.0K resaved/code/__torch__/caffe2/torch
8.0K resaved/code/__torch__/caffe2
1.3M resaved/code/__torch__/torch/fx/graph_module
1.3M resaved/code/__torch__/torch/fx
8.0K resaved/code/__torch__/torch/classes
1.4M resaved/code/__torch__/torch
1.4M resaved/code/__torch__
1.4M resaved/code
2.7M resaved/constants
13M resaved
[qihan@devvm5585.vll0 ~]$
```
Reviewed By: gmagogsfm
Differential Revision: D34455360
fbshipit-source-id: 8cc716f9bba7183746b1b4ecc33a2de34ac503b9
(cherry picked from commit f1a04730fc9ac8fdab6c8e4c44cb5529e42090e4)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72596
debug_pkl file inside of pytorch's .pt file consists of a list of SourceRanges. Each SourceRange points to a Source which is a stack track, filename, and start, end numbers. Those are emitted in debug_pkl file as strings.
Since many SourceRange shares the same source, the string for trace can be deduped.
The newer format saves a set of unique traces in a tuple, then each SourceRange will save the offset of it's trace w.r.t. position in that tuple. (i.e. manually applying dictionary compression).
The above helps with smaller file size. On loading, if we copy each trace to Source as string the runtime memory would still blowup.
To mitigate this, we use SourceView directly instead of source which will take the reference of string inside of Deserializer and make that into string_view. This is safe because Deserializer is hold by Unpickler by shared_ptr, and Unpickler is also hold by shared_ptr by another Source object. That Source object will be alive during the model construction.
Test Plan:
unit test
Took original file (312271638_930.predictor.disagg.local); loaded with `torch.jit.load` save again with `torch.jit.save`. Unzip both, look at contents:
```
[qihan@devvm5585.vll0 ~]$ du archive -h
4.0K archive/xl_model_weights
3.7M archive/extra
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K archive/code/__torch__/caffe2/torch/fb/model_transform
8.0K archive/code/__torch__/caffe2/torch/fb
8.0K archive/code/__torch__/caffe2/torch
8.0K archive/code/__torch__/caffe2
20M archive/code/__torch__/torch/fx/graph_module
20M archive/code/__torch__/torch/fx
8.0K archive/code/__torch__/torch/classes
20M archive/code/__torch__/torch
20M archive/code/__torch__
20M archive/code
2.7M archive/constants
35M archive
[qihan@devvm5585.vll0 ~]$ du resaved -h
4.0K resaved/extra
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform/splitting
8.0K resaved/code/__torch__/caffe2/torch/fb/model_transform
8.0K resaved/code/__torch__/caffe2/torch/fb
8.0K resaved/code/__torch__/caffe2/torch
8.0K resaved/code/__torch__/caffe2
1.3M resaved/code/__torch__/torch/fx/graph_module
1.3M resaved/code/__torch__/torch/fx
8.0K resaved/code/__torch__/torch/classes
1.4M resaved/code/__torch__/torch
1.4M resaved/code/__torch__
1.4M resaved/code
2.7M resaved/constants
13M resaved
[qihan@devvm5585.vll0 ~]$
```
Reviewed By: JasonHanwen
Differential Revision: D33994011
fbshipit-source-id: 8e6224c6e942e91c3403f686c8f0937d1002ed41
(cherry picked from commit a7014dd4029308c95007f362a57c31796d686647)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70509
TypeFactory will construct DynamicType when building on Edge platforms. We use this facility to make FunctionSchema return DynamicType all the time for OptionalType. We don't explicitly use DynamicTypeFactory everywhere because that requires too many changes and will split the entire aten codebase.
ghstack-source-id: 146818621
Test Plan: CI
Reviewed By: iseeyuan
Differential Revision: D33306737
fbshipit-source-id: d7ce00b438f7c03b43945d578280cfd254b1f634
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68038
Replace const std::function& to c10::function_ref because the former uses type erasure and adds 5-10 KB size overhead and adds another level of indirection to call the underlying functions. In contrast a non-owning c10::function_ref will just compile down to a raw function pointer which should be much smaller.
ghstack-source-id: 146670523
Test Plan: eyes
Reviewed By: iseeyuan, mrshenli
Differential Revision: D32264619
fbshipit-source-id: 558538fd882b8e1f4e72c4fd5e9d36d05f301e1e
Summary:
This would save the cost copying text from stack to heap in some cases (like
parsing function schema during loading phase of libtorch.so)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65309
Reviewed By: swolchok
Differential Revision: D31060315
Pulled By: gmagogsfm
fbshipit-source-id: 0caf7a688b40df52bb4388c5191d1a42351d6f1a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64839
Resulted in some extra shared_ptr refcount bumps.
ghstack-source-id: 138623356
Test Plan: CI
Reviewed By: smessmer
Differential Revision: D30875749
fbshipit-source-id: 531f04c453f7410ed3d4ff054217f21a250be8e9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64678
We know we only want one declaration, so let's not create an excess std::vector (and thus a heap allocation) for that.
ghstack-source-id: 138036978
Test Plan: CI
Reviewed By: dhruvbird, tugsbayasgalan
Differential Revision: D30813785
fbshipit-source-id: c67e0100cdef5d894282939fb6d39a57309bc240
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52881
**This PR adds:**
1. logic to parse complex constants (complex literals of the form `bj`)
2. logic to parse complex lists
3. support for complex constructors: `complex(tensor/int/float/bool, tensor/int/float/bool)`
4. Limited operator support
- `add`, `sub`, `mul`, `torch.tensor`, `torch.as_tensor`
**Follow-up work:**
1. Add complex support for unary and other registered ops.
2. support complex constructor with string as input (this is supported in Python eager mode).
3. Test all emitXYZ for all XYZ in `ir_emitter.cpp` (currently only emitConst, emitValueToTensor are tested). e.g., test loops etc.
4. onnx doesn't support complex tensors, so we should error out with a clear and descriptive error message.
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D27245059
Pulled By: anjali411
fbshipit-source-id: af043b5159ae99a9cc8691b5a8401503fa8d6f05
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50229
`fastmod -m 'cast(<((at|c10)::)?\w+Type>\(\)\s*)->' 'castRaw${1}->'` Presuming it builds, this is a safe change: the
result of `cast()` wasn't being saved anywhere, so we didn't need
it, so we can use a raw pointer instead of a new `shared_ptr`.
ghstack-source-id: 120769170
Test Plan: CI
Reviewed By: SplitInfinity
Differential Revision: D25837494
fbshipit-source-id: 46319100dc0dfc78f6d2b45148207f83481f2ada