Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47023
DeviceType pretty clearly only needs 1 byte. DeviceIndex only needs 1 byte given that machines don't have anywhere near 255 GPUs in them as far as I know.
ghstack-source-id: 116901430
Test Plan: Existing tests, added assertion to catch if my assumption about DeviceIndex is incorrect
Reviewed By: dzhulgakov
Differential Revision: D24605460
fbshipit-source-id: 7c9a89027fcf8eebd623b7cdbf6302162c981cd2
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.
I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281
Differential Revision: D18830818
Pulled By: ezyang
fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29632
This PR is BC-breaking in the following way:
Previously, C++ `torch::tensor` with a floating-point literal with no suffix (e.g. `torch::tensor(1.1)`) or a (nested) braced-init-list of
floating-point literals with no suffix (e.g. `torch::tensor({{1.1, 2.2}})` produces a tensor with dtype `at::kDouble`. After this PR, it produces a tensor with dtype `torch::get_default_dtype()`, matching Python `torch.tensor` behavior.
Test Plan: Imported from OSS
Differential Revision: D18465819
Pulled By: yf225
fbshipit-source-id: 6834fe50335c677bc3832f2a5e9cf8d1ede9f665
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29203
There is no more Variable/Tensor distinction, so fix the misleading name.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353505
Pulled By: ezyang
fbshipit-source-id: dadc394d533ab7746f70bc186c6645441a784518
Summary:
One of the purposes of the C++ API tests in `test/cpp/api/` should be to check that including `torch/torch.h` is a sufficient prerequisite for using all C++ frontend features. This PR change ensures that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27067
Differential Revision: D17856815
Pulled By: yf225
fbshipit-source-id: 49c057bd807b003e4a00f6ba73131d763a0f277a
Summary:
Replaces the `DefaultTensorOptions` with just a global default dtype that you can set and get like in Python.
Also, calls `set_default_dtype` in the implementation of `torch.set_default_dtype`. Right now these two default values are separate but will always be the same. Should we just bind `set_default_dtype` into Python? I think that might be good to do in a separate PR though.
ezyang gchanan
Also CC colesbury who wanted to do this for ATen for a while? What do you think about it?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13748
Differential Revision: D13340207
Pulled By: goldsborough
fbshipit-source-id: 2689b09eb137fabb3a92d1ad1635782bee9398e8
Summary:
This reverts commit 37cb357d8da3427900b8f72f6de7e77b77dcdbae.
Try to see if it unbreaks master
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14082
Differential Revision: D13095888
Pulled By: bddppq
fbshipit-source-id: c728f80f233b4d9daaf65f43202d8104651029a9
Summary:
Deletes the `OptionsGuard` from ATen. This works towards the goal of reworking `DefaultTensorOptions`. `OptionsGuard` is troublesome because it relies on mutating thread local state. This PR fixes those code locations and then deletes the `OptionsGuard`.
ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13738
Differential Revision: D13000962
Pulled By: goldsborough
fbshipit-source-id: c8143ee75070c2280f5fd1d9af86f8ce14279b72
Summary:
In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions.
Note that since we're just talking about typedefs, this change does not break any existing code.
Once this lands I will update stuff in `pytorch/tutorials` too.
zdevito ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523
Differential Revision: D12942787
Pulled By: goldsborough
fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
Summary:
ezyang on the template hack
smessmer on SFINAE of the `TensorOptions(Device)`
goldsborough on the C++ API test changes
zdevito on the `jit` codegen changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13146
Reviewed By: ezyang
Differential Revision: D12823809
Pulled By: SsnL
fbshipit-source-id: 98d65c401c98fda1c6fa358e4538f86c6495abdc
Summary:
This PR adds optional type to ATen native, autograd, JIT schema and Python Arg parser, closes#9513. It allows us to use optional default values (including None) for function signature and implementations like clamp, etc., and also let us remove the python_default_init hack.
Follow up:
remove python_default_init completely.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12582
Differential Revision: D10417423
Pulled By: wanchaol
fbshipit-source-id: 1c80f0727bb528188b47c595629e2996be269b89
Summary:
This PR is a large codemod to rewrite all C++ API tests with GoogleTest (gtest) instead of Catch.
You can largely trust me to have correctly code-modded the tests, so it's not required to review every of the 2000+ changed lines. However, additional things I changed were:
1. Moved the cmake parts for these tests into their own `CMakeLists.txt` under `test/cpp/api` and calling `add_subdirectory` from `torch/CMakeLists.txt`
2. Fixing DataParallel tests which weren't being compiled because `USE_CUDA` wasn't correctly being set at all.
3. Updated README
ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11953
Differential Revision: D9998883
Pulled By: goldsborough
fbshipit-source-id: affe3f320b0ca63e7e0019926a59076bb943db80
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11023
I'd like TensorOptions to not know anything about Context, so I can
move it to ATen/core without pulling in Context. To do this, the
type() method has to go, since it consults the context to get a Type.
Reviewed By: cpuhrsch
Differential Revision: D9562467
fbshipit-source-id: 61a18a76eb042a5e70b64b963501e9d68c25d4f0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11101
I'd like to invert the dependency between Tensor and TensorOptions
(such that Tensor includes TensorOptions); to do this, I'd prefer
there to not be a Tensor constructor. Eventually, all references
of Tensor will disappear from TensorOptions.h
Reviewed By: cpuhrsch
Differential Revision: D9585627
fbshipit-source-id: dd4a28b2c06b1e55f629762915f03c2b6c34d840
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11096
To discourage willy-nilly use, and make it clearer that it
is not a Variable
Reviewed By: cpuhrsch
Differential Revision: D9583699
fbshipit-source-id: 4fbde0c01ae3deb2c7ef8c125a9028f089b203ae
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10478
- Removed Backend constructor from Device, and fixed all
use-sites to use DeviceType::CPU instead of kCPU, or
use a new function backendToDeviceType to perform
the conversion.
- New method device_type() on Type; it gives you the
underlying device type, e.g., CPU for SparseCPU.
- We add backward compatibility for kCPU/kCUDA uses,
by introducing a new special type which is implicitly
convertible to both DeviceType and Backend. As long as
you don't define a function that's overloaded on both
DeviceType and Backend (but not on BackendOrDeviceType),
the implicit conversions will ensure that uses
of at::Device(at::kCPU) keep working. We fixed use-sites in
the library, but did NOT fix sites in the test code, so that
we can exercise this BC code.
Reviewed By: Yangqing
Differential Revision: D9301861
fbshipit-source-id: 9a9d88620500715c7b37e655b4fd761f6dd72716
* Created DefaultTensorOptions
* Fix TensorOptions() call which was interpreted as function decl
* Fix empty OptionsGuard
* Make options_ and mutex_ in DefaultTensorOptions class static because of dynamic linker issues
* Make DefaultOptions thread local
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions