This PR introduces 3 BC changes:
First, this PR propagates `BUILD_CAFFE2` flag to `libtorch` and `libtorch_python`, which is necessary for non-caffe2 ONNX runtimes when using `ONNX_ATEN_FALLBACK` operator export type.
Second, as a complement of https://github.com/pytorch/pytorch/pull/68490, this PR refactors Caffe2's Aten ops symbolics to consider not only the `operator_export_type` (aka `ONNX_ATEN_FALLBACK`) to emit Caffe2 Aten ops, but also whether `BUILD_CAFFE2` (which is called `torch.onnx._CAFFE2_ATEN_FALLBACK` in python binding) is set.
Lastly, it renames `onnx::ATen` to `aten::ATen` for ONNX spec consistency in a BC fashion.
ONNX doesn't have `ATen` op on its spec, but PyTorch ONNX converter emits them. Non-Caffe2 backend engines would be mislead by such operator's name/domain. A non-ideal workaround would be to have Aten ops handled based on its name and ignore the (non-complaint) domain. Moreover, users could incorrectly file bugs to either ONNX or ONNX Runtime when they inspect the model and notice the presence of an unspecified ONNX operator.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73954
Approved by: https://github.com/BowenBao, https://github.com/malfet, https://github.com/garymm, https://github.com/jiafatom
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73280
This PR adds a new attribute overload_name to the Aten node so that third party applications can implement calls to libtorch without using PyTorch source code.
This is necessary because torch's torch::jit::findOperatorFor(fullname) requires a full name, including operator and overload names.
ATen op was originally created for Caffe2, which leveraged the availability of the pytorch yaml files to create calls to the aten oeprators directly, not relying on torch::jit::findOperatorFor
The first part of the PR refactors all symbolics that create Aten ops, so that there is a single helper for this operator. Next all symbolics are updated to pass in the relevant overload name, if empty string is not applicable
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D34625645
Pulled By: malfet
fbshipit-source-id: 37d58cfb5231833768172c122efc42edf7d8609a
(cherry picked from commit e92f09117d3645b38bc3235b30aba4b4c7c71dfa)
Summary:
Almost there, feel free to review.
these c10 operators are exported to _caffe2 domain.
TODO:
- [x] let the onnx checker pass
- [x] test tensor list as argument
- [x] test caffe2 backend and converter
- [x] check the c10 schema can be exported to onnx
- [x] refactor the test case to share some code
- [x] fix the problem in ONNX_ATEN_FALLBACK
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18210
Reviewed By: zrphercule
Differential Revision: D14600916
Pulled By: houseroad
fbshipit-source-id: 2592a75f21098fb6ceb38c5d00ee40e9e01cd144
Summary:
This is the an updated version of the earlier PR https://github.com/pytorch/pytorch/pull/15185, since that one was closed.
Currently PyTorch ONNX exporter exports the logical ops (lt, gt, le, ge, eq, ne) with output type in corresponding ONNX ops as type tensor(uint8). But ONNX spec allows for only tensor(bool), which is why models that have these ops fail to load properly.
This issue is captured in #11339. Part of this issue, relating to the allowed input types, has been fixed in ONNX spec by houseroad. This PR fixes the other part pertaining to output type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15677
Reviewed By: dzhulgakov
Differential Revision: D13568450
Pulled By: houseroad
fbshipit-source-id: a6afbea1afdb4edad8f8b1bc492f50b14e5f2fce
Summary:
Currently PyTorch ONNX exporter exports the logical ops (`lt`, `gt`, `le`, `ge`, `eq`) with output type in corresponding ONNX ops as type `tensor(uint8)`. But ONNX spec allows for only `tensor(bool)`, which is why models that have these ops fail to load properly.
This issue is captured in https://github.com/pytorch/pytorch/issues/11339. Part of this issue, relating to the allowed input types, has been fixed in ONNX spec by houseroad. This PR fixes the other part pertaining to output type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15185
Differential Revision: D13494873
Pulled By: houseroad
fbshipit-source-id: 069d2f956a5ae9bf0ac2540a32594a31b01adef8
Summary:
ONNX doesn't support this. Instead flatten the inputs to the ListConstruct op and inline it into the subsequent usage
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10713
Differential Revision: D9458508
Pulled By: jamesr66a
fbshipit-source-id: 0b41e69320e694bb2f304c6221864a39121e4694