Summary:
Triton compiler does not automatically promote fp16/bf16 reductions to fp32 accumulation. This will result in significant accuracy issue.
This diff will upcast the input to FP32 for all math reductions `["welford_reduce", "welford_combine", "prod", "sum", "xor_sum"]`
Test Plan:
CI
```
python test/inductor/test_torchinductor.py TritonCodeGenTests.test_low_precision_reduction
```
Differential Revision: D65965032
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141052
Approved by: https://github.com/blaine-rister
# Issue
This PR cleans up an edge case that wasn't handled by https://github.com/pytorch/pytorch/pull/137243. The existing tiling code assumes that `node.get_ranges()` is a reliable source of pointwise and reduction numels. This is true for pointwise kernels, but the situation is more complicated with reductions. Since reductions change the number of elements in a tensor, not all ops within a reduction kernel will have the same number of iterations. For example, `var_mean` fuses pointwise division with the output of reduction sum, and the division lacks the corresponding reduction ranges.
# Fix
Instead of getting numels from `node.get_ranges()`, explicitly pass the global pointwise and reduction numels to the relevant tiling functions. In `SIMDKernel.complete_partial_tiling`, we solve for the missing numel by diving the global numel by the partial tiling's numel. This ensures all tilings have the correct global numel.
Also, in `SIMDKernel.is_compatible`, add the global reduction numel to node ranges that are missing it. For example, `{"x": 8, "r0_": 8}` is compatible with a node of ranges `([8], [])` when we have `reduction_numel=8`.
Finally, this PR generalizes some of the existing codegen to handle multiple reduction dims. We already had code to ignore reduction splits for pointwise kernels, but it only worked for 1D reductions. Now it can handle ND.
# Test plan
This PR parametrizes the existing CI test for `var_mean` to also run with tiled reductions. It also adds a new test checking that `var_mean` generates 2D tilings (with tiled reduction enabled). These new tests would fail on the current main branch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144041
Approved by: https://github.com/jansel
`autotune_at_compile_time` is a separate codegen file specifically for autotuning Triton kernels. We can skip it for non-Triton kernels (like CUTLASS).
This test (test_aoti_workspace_ptr) checks that `workspace_0.data_ptr()` is codegen-ed correctly in AOTI.
```
// in AOTI codegen
kernels.cuda_fused_0(
(const half*)arg0_1.data_ptr(), (const half*)arg1_1.data_ptr(), (half*)buf0.data_ptr(),
(int)200, (int)5216, (int)10432, (int)10432, (int)5216, (int)0, (int)5216,
(size_t*)nullptr, (uint8_t*)workspace_0.data_ptr(), stream);
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143990
Approved by: https://github.com/henrylhtsang, https://github.com/chenyang78, https://github.com/desertfire
Additionally, enable torchinductor opinfo tests exercising all
previously fixed bugs in this stack.
Note: I've manually sharded the cpp_wrapper CI checks into 2 shards.
Once all OpInfo tests are enabled we should switch back to automatic
sharding, but until then the pipeline doesn't have appropriate timing
stats. More shards would be helpful given the compilation slowdown
associated with cpp_wrapper, but 2 will do for now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141371
Approved by: https://github.com/desertfire
# Summary:
This also makes updates to different repositories throughout FB code to roll any updates needed for this new release.
I was not able to get AsyncMM.cu to build (still trying) Yfiu suggested that I just skip it for now
Test Plan:
Have run various build commands to try and expose errors
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143515
Approved by: https://github.com/eqy, https://github.com/Skylion007
Fixes#134277 and https://github.com/pytorch/pytorch/issues/142317.
Sub-PRs containing refactors from this one:
- https://github.com/pytorch/pytorch/pull/141733
- https://github.com/pytorch/pytorch/pull/141738
- https://github.com/pytorch/pytorch/pull/141751 (based off the former)
- https://github.com/pytorch/pytorch/pull/142249
- https://github.com/pytorch/pytorch/pull/142020
- https://github.com/pytorch/pytorch/pull/143135
These refactor PRs should land before the main one.
# Feature
*Note: to minimize risk, multi-dimensional reductions are gated by the flag `config.triton.tile_reductions`, which defaults to False.*
Instead of having a single reduction dimension called `"r"`, we can now support 2D reductions with `"r0_"` and `"r1_"` dimensions. 2D reductions generate two nested loops, with different block pointer advancements in each loop body. Most of the implementation is generic to ND reductions, but for now the tiling algorithm sets a hard limit at 2D.
Here's an example of a 2D persistent reduction kernel:
```
@triton.jit
def triton_per_fused_sum_0(in_ptr0, out_ptr0, xnumel, r0_numel, r1_numel, XBLOCK : tl.constexpr):
xnumel = 1
r0_numel = 15
R0_BLOCK: tl.constexpr = 16
r1_numel = 15
R1_BLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None, None]
xmask = tl.full([XBLOCK, R0_BLOCK, R1_BLOCK], True, tl.int1)
r0_index = tl.arange(0, R0_BLOCK)[None, :, None]
r0_offset = 0
r0_mask = r0_index < r0_numel
r1_index = tl.arange(0, R1_BLOCK)[None, None, :]
r1_offset = 0
r1_mask = r1_index < r1_numel
rnumel = r0_numel * r1_numel
RBLOCK: tl.constexpr = R0_BLOCK*R1_BLOCK
roffset = r1_offset + (r0_offset*r1_numel)
rindex = r1_index + (r0_index*r1_numel)
r0_0 = r0_index
r1_1 = r1_index
tmp0 = tl.load(tl.make_block_ptr(in_ptr0, shape=[15, 15], strides=[30, 1], block_shape=[R0_BLOCK, R1_BLOCK], order=[1, 0], offsets=[r0_offset, r1_offset]), boundary_check=[0, 1], padding_option='zero')[None, :, :]
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, R0_BLOCK, R1_BLOCK])
tmp3 = tl.where(r0_mask & r1_mask, tmp1, 0)
tmp4 = tl.reshape(tmp3, [XBLOCK, RBLOCK])
tmp5 = tl.sum(tmp4, 1)[:, None, None]
tl.store(out_ptr0 + (tl.full([XBLOCK, 1, 1], 0, tl.int32)), tmp5, None)
''', device_str='cuda')
```
There are a few main differences between this kernel and what Inductor would generate without this PR.
- Instead of an `r`/`RBLOCK` dimension, we have two reduction dimensions: `r0_`/`R0_BLOCK` and `r1_`/`R1_BLOCK`.
- There are special size and indexing variables for reductions, which don't directly correspond to any kernel dimension. (`rindex`, `rnumel`, `RBLOCK`, and `roffset`.) These collapse N-D reduction sizes and indices indices into 1D. This simplifies the codegen for reductions, which sometimes want to access linear indices instead of N-dimensional ones. Doing things this way allows us to generate N-D loads and stores, but access this data as if it were 1D, minimizing the blast radius of this PR. Although this makes the code more verbose, it shouldn't have a perf impact because the triton compiler eliminates dead code.
- We generate the line `tmp4 = tl.reshape(tmp3, [XBLOCK, RBLOCK])` before performing the actual reduction. This reshapes N reduction dimensions into 1D. This allows us to reduce over all N dimensions at once, simplifying the codegen and allowing the Triton complier to decide the order of processing under the hood.
Here's an example of a looped reduction:
```
@triton.jit
def triton_red_fused_sum_0(in_ptr0, out_ptr0, xnumel, r0_numel, r1_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr, R1_BLOCK : tl.constexpr):
xnumel = 3
r0_numel = 43
r1_numel = 129
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None, None]
xmask = xindex < xnumel
r0_base = tl.arange(0, R0_BLOCK)[None, :, None]
r1_base = tl.arange(0, R1_BLOCK)[None, None, :]
rnumel = r0_numel * r1_numel
RBLOCK: tl.constexpr = R0_BLOCK*R1_BLOCK
rbase = r1_base + (r0_base*r1_numel)
x0 = xindex
block_ptr0 = tl.make_block_ptr(in_ptr0, shape=[3, 43, 129], strides=[11094, 258, 1], block_shape=[XBLOCK, R0_BLOCK, R1_BLOCK], order=[2, 1, 0], offsets=[xoffset, 0, 0])
_tmp2 = tl.full([XBLOCK, R0_BLOCK, R1_BLOCK], 0, tl.float32)
for r0_offset in range(0, r0_numel, R0_BLOCK):
r0_index = r0_offset + r0_base
r0_mask = r0_index < r0_numel
for r1_offset in range(0, r1_numel, R1_BLOCK):
r1_index = r1_offset + r1_base
r1_mask = r1_index < r1_numel
roffset = r1_offset + (r0_offset*r1_numel)
rindex = r1_index + (r0_index*r1_numel)
r0_1 = r0_index
r1_2 = r1_index
tmp0 = tl.load(block_ptr0, boundary_check=[0, 1, 2], padding_option='zero', eviction_policy='evict_first')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, R0_BLOCK, R1_BLOCK])
tmp3 = _tmp2 + tmp1
_tmp2 = tl.where(r0_mask & r1_mask & xmask, tmp3, _tmp2)
block_ptr0 = tl.advance(block_ptr0, [0, 0, R1_BLOCK])
block_ptr0 = tl.advance(block_ptr0, [0, R0_BLOCK, (-1)*R1_BLOCK*((128 + R1_BLOCK) // R1_BLOCK)])
tmp4 = tl.reshape(_tmp2, [XBLOCK, RBLOCK])
tmp2 = tl.sum(tmp4, 1)[:, None, None]
tl.store(tl.make_block_ptr(out_ptr0, shape=[3], strides=[1], block_shape=[XBLOCK], order=[0], offsets=[xoffset]), tl.reshape(tmp2, [XBLOCK]).to(tl.float32), boundary_check=[0])
''', device_str='cuda')
```
In addition to the aforementioned changes to the persistent reduction, multidimensional looped reductions have a few more lines of code:
- They calculate indices inside the loop using `r0_base` and `r1_base`. For compatibility with existing codegen, these are collapsed to the 1D variant `rbase`.
- Block pointer advancements are more nuanced for multidimensional loops. At the end of each loop body, we emit a `tl.advance` line which not only increments the pointer in its own dimension, but also undoes the cumulative increments of the previous loop level. This is equivalent to the usual practice in nested loops of starting with a fresh iteration variable at each level. Implementing this required refactoring the way we generate pointer advancements into a new `self.pointer_advancements` field of the kernel, which categorizes advancements by dimension.
The biggest difficulty in implementing this feature was that we represented tiling with a tuple like `(5,2)`. In the existing codebase, the compiler can infer that the reduction dimension of `(5,2)` is `2`, since reductions are always the last dimension. This became cumbersome now that we have to support multiple reduction dimensions, so I refactored tiling into a dict like `{"x": 5, "r0_": 2, "r1_": 4}`. This required quite a few code changes, but I don't think it makes the underlying logic much more complex. This will also make it easier to eventually support simultaneous pointwise and reduction tiling, like `{"x": 5, "y": 5, "r0_": 2, "r1_": 4}`. (This is not supported today, but we might want to do it eventually.)
The existing tiling algorithm generalized naturally to support reductions. For pointwise kernels, we tile the pointwise dimensions (`"x"`, `"y"`) as is. For reduction kernels, we never tile the `"x"` dimension, and only tile the reduction dimensions (`"r0_"`, `"r1_"`). Thus we only ever tile pointwise OR reduction dimensions, but not both. In principle it seems possible to support both, but it would likely require changes to the kernel fusion and autotuning logic. I thought it best to keep this PR as minimal as possible since it already touched a lot of different files.
Unfortunately, these changes weren't enough to get block pointers in some seemingly simple test cases. In some tests for `argmax` and `var_mean`, we already collapse reduction dimensions into 1D and generate modular indexing expressions, prior to tiling. So it's not trivial to figure out how to expand the collapsed reduction dimension back to a shape that would simplify the indexing.
To address these cases, this PR adds a new feature to the `config.prefer_nd_tiling` option, which analyzes reads and writes in the kernel, using the same mod-div pattern matching logic that generates block pointers later on. By matching this pattern, we can solve for the tiling splits which *would* simplify the indexing expression, and use then use that tiling to eliminate the modular indexing and emit a block pointer. This tiling mode is still off by default, but it's important for certain applications where we need to get as many block pointers as possible.
# Test plan
This touches pretty much anything that uses the Triton and Halide backends, so the existing CI provides good coverage. However, 2D reductions are gated behind a few feature flags like `config.prefer_nd_tiling` and `config.tile_reductions`, so this really only checks that the PR doesn't break 1D reductions.
In addition to existing CI tests, this PR also adds some new tests that specifically stress 2D reductions:
- `test_2d_reduction_odd_shapes`: test 2D reductions with a variety of ops and sizes. This covers the typical persistent and looped reductions.
- `test_2d_reduce_no_x_dim`: test 2D reductions with no x dimension.
- `test_2d_welford_reduction`: test 2D welford reductions with block pointers.
- `test_welford_non_block_pointer`: test a 2D welford reduction when block pointer analysis fails.
- `test_reduction_multiple_discontiguous_dims`: test reducing over more than one discontiguous dimension. We won't get a block pointer for this case, since that would require 3D tiling, but we're currently limited to 2D.
- `test_2d_reduction_multi_kernel`: test multi kernel autotuning on a 2D softmax kernel.
- `test_enable_tiled_reductions`: test that `config.triton.tile_reductions` enables/disables this feature.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137243
Approved by: https://github.com/jansel
Co-authored-by: Yueming Hao <yhao@meta.com>
Co-authored-by: Jason Ansel <jansel@meta.com>
Alas, PythonPrinter would not work here, not would CppPrinter, so start building MetalPrinter.
`pytest test/inductor/test_torchinductor.py -k _mps` score is 474 failed, 277 passed, 32 skipped
Before this change:
`pytest test/inductor/test_torchinductor.py -k _mps` reported 506 failed, 245 passed, 32 skipped
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143973
Approved by: https://github.com/jansel
ghstack dependencies: #143948, #143949
This PR aims to add the functionality support of max-autotune for XPU. The current triton templates and configurations are not well optimized for XPU, so the performance is not ready yet. Also the `mm_plus_mm` template have accuracy issues in some cases. We will address these issues in the next PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143266
Approved by: https://github.com/EikanWang, https://github.com/jansel
`"compile_id"` had slipped into our generated Triton code (in the
metadata), which will defeat caching because the same kernels generated
in a different order would not cache hit with eachother.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143951
Approved by: https://github.com/oulgen
Only include the parts of `pybind11` that handle GIL management within `cpp_wrapper`. This dramatically improves compilation times by reducing the number of headers we compile. Improvements on my local system are on the order of 2x.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143772
Approved by: https://github.com/Skylion007
`"compile_id"` had slipped into our generated Triton code (in the
metadata), which will defeat caching because the same kernels generated
in a different order would not cache hit with eachother.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143951
Approved by: https://github.com/oulgen
**Summary**
Fix issue: https://github.com/pytorch/pytorch/issues/143729. `frexp` has 1 input but 2 output tensor with different data type, current `deduce_dtype_for_cpp_cse_variable` can't deduce the data type for each output correctly due to missing of output index. In this PR, we set the data type of cse var in the codegen of `frexp` and avoid it being overridden in the following flow.
**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_repro.py -k test_frexp
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143746
Approved by: https://github.com/jgong5
A few small things in this PR:
- fixed a bug where `workspace.data_ptr().data_ptr()` showed up
- for SM80 CUTLASS kernels, the symbol size for W.size(1) was never created
- for addmm kernels, the ldc bias symbol never showed up
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143528
Approved by: https://github.com/henrylhtsang
Changes:
1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
This PR aims to add the functionality support of max-autotune for XPU. The current triton templates and configurations are not well optimized for XPU, so the performance is not ready yet. Also the `mm_plus_mm` template have accuracy issues in some cases. We will address these issues in the next PRs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143266
Approved by: https://github.com/EikanWang, https://github.com/jansel