Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Convert from a list/bucket based TD system to just a numbers based TD system. Looks like a massive change but a decent amount of it is tests and removing code.
Main file of interest is interface.py, which Github is collapsing by default due to size
The test files pretty much got rewritten entirely since a lot of the old tests are no longer relevant.
Other notable changes:
* Use Frozenset to make TestRun hashable
* Adds tools/test/heuristics/__init__.py to ensure that unittest can discover the tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119901
Approved by: https://github.com/osalpekar, https://github.com/huydhn
Move the pytest cache downloading into the build step and store it in additional ci files so that it stays consistent during sharding.
Only build env is taken into account now instead of also test config since we might not have the test config during build time, making it less specific, but I also think this might be better since tests are likely to fail across the same test config (I also think it might be worth not even looking at build env but thats a different topic)
Each cache upload should only include information from the current run. Do not merge current cache with downloaded cache during upload (shouldn't matter anyways since the downloaded cache won't exist at the time)
From what I cant tell of the s3 retention policy, pytest cache files will be deleted after 30 days (cc @ZainRizvi to confirm), so we never have to worry about space or pulling old versions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113804
Approved by: https://github.com/ZainRizvi
Fixes a bug in TD metrics generation where it wouldn't be able to find the rank and relevance that a heuristic gave a test run if that heuristic had divided that test into multiple test runs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113789
Approved by: https://github.com/clee2000
Allow heuristics to actually downgrade the relevance of a test. Note that NONE/UNLIKELY tests will still get executed, but they will be ran at the end of the CI
The Relevance chosen affects the outcome when Heuristics offer conflicting predictions. A relevance higher up in this list means higher confidence in the declared relevance:
HIGH > NONE > PROBABLE > UNLIKELY > UNRANKED
Given that we assume ordering based on the list in init right now since the lists are appended, do a similar thing for UNLIKELY and NONE
ex HEURISTICS = [a, b, c, d]
currently all things in b.high and added after a.high
if b.none includes things in a.high, a.high trumps
if b.none includes things in a.probable, then b.none trumps since none is stronger than probable
if b.unlikely includes things from a.high/probable, a.high/probable trumps since unlikely and probable are at a higher strength
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112671
Approved by: https://github.com/clee2000