Commit Graph

132 Commits

Author SHA1 Message Date
542c273e5b handle scenario when GPU support is not available and p2p_access_pattern is empty (#17974)
Summary:
Observed that when there is no GPU support available `workspace `sets `GetGpuPeerAccessPattern `to `[]` in
https://github.com/pytorch/pytorch/blob/master/caffe2/python/workspace.py#L79
and this case is not handled in https://github.com/pytorch/pytorch/blob/master/caffe2/python/data_parallel_model.py#L1065.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17974

Differential Revision: D14517066

Pulled By: ezyang

fbshipit-source-id: 186911d95c07e9a55ab82a41d0c7c919e4281bb4
2019-03-18 23:11:54 -07:00
c02e2ff0b0 Support multi-device configuration for MKL-DNN (#12856)
Summary:
MKL-DNN support multi-node mode,but not support multi-devices mode,this commit will support multi-devices for MKL-DNN.This commit  depend on https://github.com/pytorch/pytorch/pull/11330
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12856

Differential Revision: D13735075

Pulled By: ezyang

fbshipit-source-id: b63f92b7c792051f5cb22e3dda948013676e109b
2019-02-20 16:57:43 -08:00
620ff25bdb Enhance cpu support on gloo based multi-nodes mode. (#11330)
Summary:
1. Add some gloo communication operators into related fallback list;
2. Work around to avoid compiling errors while using fallback operator whose CPU operator inherits from 'OperatorBase' directly like PrefetchOperator;
3. Add new cpu context support for some python module files and resnet50 training example file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11330

Reviewed By: yinghai

Differential Revision: D13624519

Pulled By: wesolwsk

fbshipit-source-id: ce39d57ddb8cd7786db2e873bfe954069d972f4f
2019-01-15 11:47:10 -08:00
0d663cec30 Unify cuda and hip device types in Caffe2 python front end (#14221)
Summary:
Goal of this PR is to unify cuda and hip device types in caffe2 python front end.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14221

Differential Revision: D13148564

Pulled By: bddppq

fbshipit-source-id: ef9bd2c7d238200165f217097ac5727e686d887b
2018-11-29 14:00:16 -08:00
723f40d94e video model test workflow on CPU (#13203)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13203

Minor changes in the test workflow to run the model on CPUs

Reviewed By: stephenyan1231

Differential Revision: D9925797

fbshipit-source-id: b7b1fb2658ab68b1ffc2b1f7b314958ea4732b32
2018-10-26 20:48:18 -07:00
2b63b7a0a5 Support GPU version of Spatial Batch Norm (#11711)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11711

Added GPU support for spatial batch normalization. This functions by reducing values from GPUs onto a CPU and broadcasting those results back to each GPU. We have run several experiments, and found these results to be better than those without spatial bn: https://fb.quip.com/fr7HAeDliPB8

Reviewed By: enosair

Differential Revision: D9547420

fbshipit-source-id: ccbd2937efd6cfd61182fff2f098fb7c5ae8aeb1
2018-10-18 11:22:13 -07:00
12686ec656 fix _AllReduce not applying the DeviceScope guard to model.Copy operations. (#12342)
Summary:
This resolves an issue where the `model.Copy` operation would
copy to the wrong GPU, such that the below `net.Sum` operation
would use an input argument for which p2p access was not enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12342

Differential Revision: D10343181

Pulled By: ezyang

fbshipit-source-id: fd2d6d0ec6c09cda2db0a9a4f8086b3560e5a3ec
2018-10-12 10:47:58 -07:00
f54ab540af Rename cuda_gpu_id to device_id in DeviceOption (#12456)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12456

codemod with 'Yes to all'
codemod -d . --extensions h,cc,cpp,cu,py,proto,pbtxt,pb.txt,config cuda_gpu_id device_id

Overload TextFormat::ParseFromString to do string replace when parsing from protobuf format

Reviewed By: Yangqing

Differential Revision: D10240535

fbshipit-source-id: 5e6992bec961214be8dbe26f16f5794154a22b25
2018-10-09 15:54:04 -07:00
ff608a9ff3 Back out "Revert D10123245: Back out "codemod cuda_gpu_id to device_id"" (#12232)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12232

Original commit changeset: fca91fea58b7

This adds proper modifications to the DeviceType <->DeviceOption conversion code added in D10033396

Reviewed By: jerryzh168

Differential Revision: D10132473

fbshipit-source-id: 801ef777e2950982cb47b48051b1471a0a91e64b
2018-10-01 21:54:52 -07:00
3010dc4208 Revert D10123245: Back out "codemod cuda_gpu_id to device_id"
Differential Revision:
D10123245

Original commit changeset: d83da8e00a12

fbshipit-source-id: fca91fea58b7df208edc2e218a1d514f9821ec7b
2018-10-01 12:22:36 -07:00
7d7d336c45 Back out "codemod cuda_gpu_id to device_id"
Summary:
Original commit changeset: f5614a5d2607

D9986213 is causing Multifeed Aggregator a [huge performance different](https://our.intern.facebook.com/intern/ads/analyze_canary/412951953278781781/) and is blocking aggregator push since last Friday night: https://fburl.com/feedtools/b6izvwjz
We need to land this revert ASAP to unblock aggregator push.

Reviewed By: orionr

Differential Revision: D10123245

fbshipit-source-id: d83da8e00a1250f5d09811a0a587c127e377aab2
2018-10-01 11:31:14 -07:00
3eb5940cf5 codemod cuda_gpu_id to device_id (#12022)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12022

codemod -d . --extensions h,cc,cpp,cu,py,proto,pbtxt,pb.txt,config cuda_gpu_id device_id

codemod with 'Yes to all'

Reviewed By: orionr

Differential Revision: D9986213

fbshipit-source-id: f5614a5d26078817aee8caf79a494abfd6a95ff1
2018-09-27 20:24:53 -07:00
0e8088d6f6 Fix typo in data_parallel_model
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11086

Differential Revision: D9581297

fbshipit-source-id: b164177bdbb309f56ff3231c1ffc0973f6c5299b
2018-09-04 13:15:31 -07:00
dbce1c840f exposing net_transformer_fun before add grad (#11003)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11003

Need a interface to re-write the graph after the net is built and after adding gradient ops.

Reviewed By: aazzolini, harouwu

Differential Revision: D9557827

fbshipit-source-id: 2e082f0321c0776e488a29e18047d950948e7c37
2018-08-29 12:55:52 -07:00
f3d72b2101 Modify barrier net to allow better control over its initialization and execution in DPM (#9665)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9665

In data_parallel_model, we isolate synchronizing barrier init net into its own from the param_init_net, so that we could have finer granularity of control over the barrier net.

Reviewed By: andrewwdye

Differential Revision: D8375389

fbshipit-source-id: ce0c8c1c8e4bd82b7078a1b07abaced3f149d578
2018-07-22 00:23:47 -07:00
edb88b5f3a Update from Facebook (#8887)
* add opencl + fpga context

adds an opencl context inside caffe2/fb which can be used for fpga access

* [Caffe2] Force tensor inference checks to be triggered during testing

We've started to rely on TensorInference functions more for different analysis.  This diff ensures that the TensorInference function's result matches what is expected from the definition of the operator.

* Enable building //caffe2:torch with @mode/opt

In @mode/opt, python runs out of a PAR, which breaks a lot of
assumptions in the code about where templates/ folders live relative
to __file__. Rather than introduce hacks with parutil, I simply turn
template_path into a parameter for all the relevant functions and
thread it through from the top level.

* [Caffe2] Fix cost models for DotProduct and Div.  Update Tensor Inference for dot product

As title.  DotProduct states that output is a 1-D tensor (https://caffe2.ai/docs/operators-catalogue.html#dotproduct) though code suggests it is either 0- or 1-D depending on inputs.  TensorInference defined to support implementation.

* [SG-MoE] Add an option to make the experts NOT as components

* [nomnigraph] Rename and fixup convertToNeuralNetOperator API

This will make things a bit cleaner

* no longer symlink THNN.h and THCUNN.h

* forced decoder network (onnx export)

Closes https://github.com/pytorch/translate/pull/95

Add networks in ensemble_export.py to create a forced decoding network from PyTorch NMT checkpoints. This network takes an arbitrary numberized (source, target) pair and returns the model score for the translation, including penalties.

Vocabulary reduction networks are also supported, but note that target indices which are not in the possible_translation_tokens generated for the source input will be trea

* Revert schema change to fix production models

Revert schema change to fix production models

* MockLogDeviceReader - rebase on FIX

# Goal

1), Build a make_mock_log_device_reader using make_mock_reader

2), Replace the real log_device_reader here: https://fburl.com/raihwf1p

# Log by D8151734

Real log_device_reader:
```
I0529 20:29:05.373108 954994 tensor.h:839] Tensor print_net/log of type std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >. Dims: (): read_net/ParseOpenTrainingRow:0
I0529 20:29:05.373244 954994 tensor.h:839] Tensor read_net/ParseOpenTrainin

* [C2/D2][1/n]: Nonnegative-Constrained Optimization -- log barrier

implement log barrier as a regularization method

* Add teacher weight screening.

Add teacher weight sceening according to teacher labels. If teacher label is zero, we do not use the distill loss in the objective function.

* Add NormalizerContext

See task for more detail. This implementation is a copy of what exists for RegularizerContext except for how the parameters are defined in the model_definition thrift file.

I'll try an alternative implementation which overrides the default arguments of functions instead like for argscopes in tensorflow.

https://github.com/pytorch/pytorch/compare/master...MaximeBoucher:update-from-facebook-0939578c068c?expand=1

* Adding cosine similarity option in dot processor

Add pairwise cosine similarity option in dot product.
Add an option to concate dot product and cosine similarity.
Add test cases.

* [nomnigraph][redo] Concat elim for sparseNN

Same as D7962948, which was reverted because Operator Schema was not
defined

* [pytorch] Revert pytorch/pytorch#7918 'Release GIL when copying to shared memory', breaks ASAN

Revert this pytorch diff that breaks ASAN when running Filament in dev mode; in opt mode it gives "bad file descriptor" errors. Looks like a race when copying tensors to shared memory in multiple mp.Queue's (which spawn separate threads).

https://github.com/pytorch/pytorch/pull/7918/files

* [nomnigraph][mobile] Enable nomnigraph by default, use -Oz on nomnigraph related code to reduce code size

enables nomnigraph and reduces codesize

* [Warmup] Allow both offline incremental training and online training

Change plan name on saving side and reading side to support both training type

This diff depends on D8128530 and D8168651.

* Revert D7802642: [Warmup] Allow both offline incremental training and online training

This reverts commit afc213cf9b36cecf75333a788391c4d09f4afccc

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* Add legacy grad logic to fix div op on old graphs.

Add legacy grad logic to fix div op on old graphs.

* Correctly propagate operator failures

Propagate errors from operators that throw exceptions and return false

* Revert D8374829: [caffe2][nomnigraph][redo] Concat elim for sparseNN

This reverts commit 6dda028c463e54bb5c32188bbbe9202107e188a5

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [Caffe2] Added extra_info to core.DeviceOption(), enforced extra_info to be inherited in scope.DeviceScope

extra_info is a newly defined field in DeviceOption proto. This diff added extra_info to the core.DeviceOption().  And, In scope.DeviceScope(), this diff enforce the new scope to inherit the extra_info from old scope.

* [opt] hgdirsync wasn't enabled, merge diverged code

Here's the damage, P59732616 basically xplat was left behind but had
the change from assert to CAFFE_ENFORCE

* OMP parallelism over RoIs for RoIAlign op

Simpler to parallelize over RoIs. Shouldn't affect other uses as it relies on
the number of OMP threads set during startup.

PR: https://github.com/pytorch/pytorch/pull/8562

* Use int64_t for shape in FillOps

to avoid overflow of int32

* Implement Rotated RoIAlign op

Based on Rotated RPNs as explained in https://arxiv.org/abs/1703.01086.
The idea is simple - orientation/angle is added as an RPN
anchor parameter and then the angle is further regressed similar to bbox
coords. There are some additional changes related to NMS and IoU, but besides
that it's a direct extension to Faster-RCNN. Further details in https://fb.quip.com/sZHlA1iMfWPZ.

RoIs are represented in [center_x, center_y, width, height, angle] format.
`angle` repre

* Rotated RoIAlign op CUDA forward implementation

CUDA forward impl for D8415490

* RoIAlignRotated op CUDA backward pass implementation

TSIA

* All remaining fixes to eliminate process_github.sh

Most of this diff has already been reviewed separately, except for the parts relating to _thnn/utils.py and _utils._internal.py

remove skipIf(True, 'Fbcode') line from process_github.sh

replace sed of cpp file with #ifdef to control cudnnDestroy use

undo sync-time deletion of .gitattributes, remove process_github.sh

switch to using _utils._internal rather than try-import-except

This diff also fixes the open-source bug where rebuilds have

* Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

Original commit changeset: 7707d2efe60e The original diff is backout becuase the online trainer package is backed out. This code would only work with new online trainer package

* [easy] improve error log in adagrad op

as title

* re-allow use of thnn_h_path

This fixes cffi usage in OSS

* [4/4] [tum] paralyzing layerNorm for GPU full sync

as title

* add compile=False to pytorch tests, remove hack with pyc

* Add shape and type inference for RowWiseArgMax operator

See title

* Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training"

This reverts commit 78167eeef0af16b60f72c82f9dcdda9b41b4dcbd

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [fix-flaky-test] mock_hive_reader_test flaky, because GlobalCounter collects local counts intervally

# Problem

`MockHiveReader` uses `GlobalCounter` to limit `max_examples`.

GlobalCounter on server node collect local counts from worker nodes every 1 sec.

This 1 sec delay makes it impossible to limit exactly to the `max_examples`, it will definitely exceed `max_examples`.

# Plan

Given,
```
Expected num_examples = max_examples + num_examples/sec (Read Speed) x 1 sec (GlobalCounter Sync Int

* [Caffe2] Fix FCGradient cost inference.  Prevent overflow in cost inference

FCGradient missed a factor 2 in the `num_outputs == 3` case.  Overflow was occurring with flop calculation for FC.  Changed types to `uint64_t` to prevent future problems.

* Fix binary ops with empty inputs

Fix binary ops with empty inputs

* Support the filling of input blob with provided data

as title for Biz Integrity case

* Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

Original commit changeset: 30c55dd38816 Original diff is reverted due to introducing bad integration test. Fixed the integration test.

* [c2][easy] improve pack ops error loggings

as desc.

* Add ShapeTypeInference for LpNorm operator

As desc

* Shard test_nn to reduce runtime for each test target

Closes https://github.com/pytorch/pytorch/pull/8793

The current test_nn would time out and be disabled in GreenWarden, and we need to have an option to split it up in order to pass the stress test. Right now GreenWarden roughly allows running 100 test cases in test_nn before timing out, and here we have an option to divide test_nn into 30 shards (with ~40 tests in each shard) to allow for some test suite growth in the future.

* Change default caffe2_streams_per_gpu to 1

* Remove IN_SANDCASTLE from common.py and test_nn.py

We prefer to disable the failing tests through Sandcastle UI instead.

* Add a new class for an updated prof_dag.proto

This diff contains:
- An updated prof_dag.proto that contains blob profiles.
- A class to deserialize this information (serialization is in a follow up diff)
- Update to separate profiling information from NeuralNet (and use it as part of the class above).
- Unit tests

* Lambdarank for SparseNN

This diff adds a lambda_rank_layer for SparseNN.
 changes include
1) Adds support for multi sessions in c2 op
2) Adds support for two different loss functions in c2 op
3) Unit tests for op

* Revert D8586950: Back out "Revert D8515341: Back out "Revert D7802642: [Warmup] Allow both offline incremental training and online training""

This reverts commit 012220ed63eccc35659a57b31d16a3625da6317b

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [easy] A few fixups to multithread predictor benchmark

(1) support perf on T6 server
(2) remove dead code

* fix a bug about the map size

as title

* Fix reduce sum on in-place case.

Fix reduce sum on in-place case.

* [Warmup] Reland reverted diff Allow both offline incremental training and online training

Closes https://github.com/pytorch/pytorch/pull/8827

fix net transform integration test. Allow offline and online trainer to coexist D7802642.

* Add StoreHandlerNotAvailableException

Add an exception for a store that is not available or has been
deleted.

* Use exception handling for fault tolerance, missing KV store

Remove status blobs to communication ops so that exceptions propagate on
failure.

* [C2/D2][2/n]: Nonnegative-Constrained Optimization -- bounded grad proj

for simple bounded constrained optimization, incl non-negative box constraints.

* [GanH]: Adaptive Weighting with More Estimations

With implemented postivity optimization, we now learn adaptive weights with different
parameterizations.

This improves parameter estimation and training stability.

* Revert some changes for landing

* Remove AutoNoGIL in StorageSharing

* Temporarily disable net_tests

* Revert "[Caffe2] Force tensor inference checks to be triggered during testing"

This reverts commit 67ef05c22b2f71b4a489695384932f968384a2a4.

* Revert "Fix reduce sum on in-place case."

This reverts commit 6cb8a8e1b3db7b6d20941b0053e3f3836068eb64.

* Revert "Revert "Fix reduce sum on in-place case.""

This reverts commit 130a257c0893dc09f4bd6e6a45d112261807fd2c.
2018-06-26 14:55:48 -07:00
b875fb281c Update from facebook (#7451)
* [bootcamp] Improve "Shape" operator to support axes specification

To improve .shape operator of Caffe2 to support x.shape(tensor, axes), which takes an optional int array "axes" as input. For example, x.shape(tensor, [1, 0]) will return the dimension for axis 1 and 0 following the specified order. For current version, "axes" input allows duplications and can have arbitrary length.

* Back out "Add barrier net that runs before training nets"

Original commit changeset: b373fdc9c30f. Need additional changes to some callers to support barrier failures.

* Change warning to verbose log to reduce log spam

The `LOG(WARNING)` was a bit spammy for regular use so lets just make it a `VLOG`.

* Extract the shared code from different caffe2_benchmark binaries

The OSS benchmark and Internal benchmark will share most functions in the benchmark.

* Support MFR in sequence training

As titled.

* Make knowledge distillation work with using logged prediction feature as teacher label.

1) Add loading raw dense feature as teacher label.
2) Optional calibration function for teacher label
3) Add teacher label into generic unit test
4) Deprecated TTSN workflow version using feature_options to config teacher label

* [C2/CUDA]: unjoined cross entropy sigmoid

as desc

* Add async_scheduling executor into deferrable_net_exec_test

Add async_scheduling into tests and fix some exception cases

* Fix Event disabled error

When disabling event in RNN ops make sure we don't call Finish on disabled
event from op's RunAsync

* cuda ensure cpu output op can handle both TensorCPU and TensorCUDA

as desc.

* [C2 Core] Infer input device option in C2 hypothesis_test checkers

Improve how we default input blob device options.
Previously it defaults as where op lives but it is not necessarily the case.

For example:
CopyCPUToGPU

* [C2 Op]SplitByLengthsOp CPU/GPU implementation

[C2 Op]SplitByLengthsOp CPU/GPU implementation

* fix undefined symbol error

not sure why we're getting undefined symbol even with link_whole = True
Need to figure out why but need this workaround for now

* Add tools in DAIPlayground platform to help debugging models

Add additional tools to allow Plauground override individual method defined in AnyExp.  This will allow user to create module that specificly change certain default method behavior.  An example included in this diff is deactivating test model and checkpointing.  When debugging any model problems, switching off components helps me quickly narrow down the location of the bug.  The technique is extensively used in task T27038712 (Steady memory increase in EDPM, eventually resulting in gloo/cuda.cu:34: out of memory)

* add shape and type inference for int8 conversion operator

* Fix flaky test for group_norm

Fix flaky test for group_norm

* Fix group_norm_op_test flaky

Fix group_norm_op_test flaky

* Implementation of composite learning rate policy

In many state-of-the-arts deep learning works, people use a simple trick to
schedule the learning rate: use a fixed learning rate until error plateaus
and then switch to a different fixed learning rate, and so on. In this diff,
we implemented a simple version of the composite learning rate. The user gives
a set of learning rates policies and corresponding iteration nums, and the
optimizer will change the learning rate policy based on the number of iterations so far.

For example, the user give two learning rate policies, one is FixedLearningRate
and PolyLearningRate, with an iteration number of 1k. Then the first 1k iteration,
we use FixedLearningRate. For the following iterations, we use PolyLearningRate.

* Split two use cases of CachedReader into two classes, DBFileReader and CachedReader

# Use Cases:

1). input: DB file -> output: DatasetReader.

Use DBFileReader.

2). input: Reader -> build cache DB file -> output: DatasetReader.

Use CachedReader.

# Changes to CachedReader:

1). Move db_path to the constructor.
Because in mock reader. cache will always be built ahead.

# Changes to tests:

1). Make a separate TestCase class for CachedReader and DBFileReader.

2). Make it possible to add more test functions by adding setUp, tearDown and _make_temp_path.

3). Make delete db_path more general. `db_path` could be a file for `log_file_db`, but could also be a directory for `leveldb`.

* Back out "On Mobile phones, call GlobalInit with no arguments in predictor in case we need to perform initialization"

Original commit changeset: 4489c6133f11

* Fix LARS bug

Fixed a bug in the LARS implementation which caused all subsequent blobs not using LARS to have the LARS learning rate multiplier applied to them.

* [tum] support sparse init & add uniformFill option

as title

* Propagate exception for async nets

Capture the exception when an exception is thrown in async nets and re-throw it after wait().  This allows exceptions to be propagated up to the caller.

This diff was a part of D7752068.  We split the diff so that C2 core files changes are in a separate diff.

* Automatic update of fbcode/onnx to 69894f207dfcd72d1e70497d387201cec327efbc

Previous import was 403ccfbd0161c38f0834413d790bad0874afbf9a

Included changes:
- **[69894f2](https://github.com/onnx/onnx/commit/69894f2)**: Use op schema.all tensor types in random like definitions (#865) <Scott McKay>
- **[b9d6b90](https://github.com/onnx/onnx/commit/b9d6b90)**: Clarify random like operators (#846) <Scott McKay>
- **[fc6b5fb](https://github.com/onnx/onnx/commit/fc6b5fb)**: Refactor shape inference implementation (#855) <anderspapitto>
- **[b7d8dc8](https://github.com/onnx/onnx/commit/b7d8dc8)**: fix cmake warning message (#863) <Eric S. Yu>
- **[f585c5d](https://github.com/onnx/onnx/commit/f585c5d)**: add pytorch-operator test for tile (#831) <Wenhao Hu>
- **[993fe70](https://github.com/onnx/onnx/commit/993fe70)**: add install step (#832) <Eric S. Yu>
- **[68bc26c](https://github.com/onnx/onnx/commit/68bc26c)**: add type inference for traditional ml ops except classifier ops. (#857) <Ke Zhang>
- **[9cc0cda](https://github.com/onnx/onnx/commit/9cc0cda)**: fix string representation of scalar types (#858) <G. Ramalingam>
- **[1078925](https://github.com/onnx/onnx/commit/1078925)**: fix y in pow test case to scalar (#852) <Wenhao Hu>
- **[c66fb6f](https://github.com/onnx/onnx/commit/c66fb6f)**: Add some math function shape inference (#845) <anderspapitto>
- **[ff667d1](https://github.com/onnx/onnx/commit/ff667d1)**: Refactor return type and docs for ONNXIFI_BACKEND_DIRECTX_ID (#853) <Marat Dukhan>
- **[11c6876](https://github.com/onnx/onnx/commit/11c6876)**: clear initializer names when clear initializer (#849) <Wenhao Hu>
- **[73c34ae](https://github.com/onnx/onnx/commit/73c34ae)**: Clarify FeatureVectorizer description. (#843) <Scott McKay>
- **[1befb9b](https://github.com/onnx/onnx/commit/1befb9b)**: Remove useless text in docs (#850) <Lu Fang>
- **[e84788f](https://github.com/onnx/onnx/commit/e84788f)**: Fix SELU attributes' default values (#839) <Lu Fang>
- **[ebac046](https://github.com/onnx/onnx/commit/ebac046)**: Add tile test case (#823) <Wenhao Hu>
- **[8b7a925](https://github.com/onnx/onnx/commit/8b7a925)**: a few more shape inference functions (#772) <anderspapitto>
- **[9718f42](https://github.com/onnx/onnx/commit/9718f42)**: Make the coefficient non optional for LinearClassifier (#836) <Jaliya Ekanayake>
- **[ef083d0](https://github.com/onnx/onnx/commit/ef083d0)**: Add save_tensor and load_tensor functions for Protos (#770) <Lu Fang>
- **[45ceb55](https://github.com/onnx/onnx/commit/45ceb55)**: Check if CMAKE_BUILD_TYPE set before project(). (#812) <Sergii Dymchenko>
- **[4b3d2b0](https://github.com/onnx/onnx/commit/4b3d2b0)**: [WIP] reenable shape inference tests (#834) <anderspapitto>
- **[22d17ee](https://github.com/onnx/onnx/commit/22d17ee)**: RNN tests: LSTM, GRU, SimpleRNN (#739) <Peyman Manikashani>
- **[de65b95](https://github.com/onnx/onnx/commit/de65b95)**: dimension denotation (#443) <Tian Jin>
- **[eccc76e](https://github.com/onnx/onnx/commit/eccc76e)**: fix field number issue in onnx operator proto and enable its build (#829) <Ke Zhang>
- **[d582beb](https://github.com/onnx/onnx/commit/d582beb)**: disable shape inference test to unbreak ci (#830) <Lu Fang>
- **[485b787](https://github.com/onnx/onnx/commit/485b787)**: function proto for composite op. (#802) <Ke Zhang>
- **[cd58928](https://github.com/onnx/onnx/commit/cd58928)**: specify defaults for attributes of Affine op (#820) <G. Ramalingam>
- **[7ee2cf9](https://github.com/onnx/onnx/commit/7ee2cf9)**: merge the dummy backend back into the main one (#743) <anderspapitto>
- **[1c03a5a](https://github.com/onnx/onnx/commit/1c03a5a)**: [Proposal] ONNX Interface for Framework Integration (previously ONNX Backend API) header and docs (#551) <Marat Dukhan>
- **[3769a98](https://github.com/onnx/onnx/commit/3769a98)**: Rename real model test case from VGG-16 to ZFNet (#821) <Lu Fang>

* [C2]ReluN Op

relu n op.

tf reference: https://www.tensorflow.org/api_docs/python/tf/nn/relu6

* Call destructor when assigning a blob value

* Add executor overrides

Add executor overrides flag to enable migration to async_scheduling executor

* Add barrier net that runs before training nets - attempt #2

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.
Removed explicit data_parallel_model.py.synchronize call in holmes workflow.

This change was landed previously but caused errors for some EDPM workflows - See https://fb.facebook.com/groups/1426530000692545/permalink/1906766366002237/ - because EDPM assumes any call to CreateOrCloneCommonWorld and Gloo ops are wrapped in exception handlers but in this case exception thrown in the barrier init net is not handled.

To address this issue, we add _CreateOrCloneCommonWorld to the param_init_net instead of a new barrier init net.  Since errors for param_init_net run is handled gracefully and re-rendezvous, it should fixes the problem.

* Handle empty nets in async_scheduling

Make sure we don't get stuck on empty nets

* use CUDA_ARCH for conditional compile

* [C2 fix] infer function for ensure_cpu_output_op

* Update group_norm test to reduce flaky test

* Fix lr_multiplier for GPU
2018-05-10 23:14:27 -07:00
664fe34e0a [Caffe2][fbcode=>GH sync] Update from facebook 4323b18ce13c (#7116)
* [fix] Re-enable events in RNN ops

We have earlier added event disabling in RNN ops as back then we didn't use
events, with current use cases this is no longer true
(https://fburl.com/8vd0lp8y)

* use ops with cude impl

* Revert D7729695: [caffe2][fix] Re-enable events in RNN ops

This reverts commit 4b215c7496fb724656ff4c776933a15bdbbcde5e

@bypass-lint

An infra SEV is better than not reverting this diff.
If you copy this password, see you in SEV Review!
@cause_a_sev_many_files

* [observer] Clean up observer_config.h

#accept2ship

* [1/n] Refactor dataio_test.py

Replace code duplication with a common function

* Add barrier net that runs before training nets

Add a synchonize barrier net that is run before training nets.  With this net, shards that are faster will wait for other shards before start training.  This reduce chances of the faster shards timing out during GLOO AllReduce.

Removed explicit data_parallel_model.py.synchronize call in holmes workflow.  Similar change in speech/asr_training workflow will come in another diff.

* Support the dnnlowp backend in caffe2_benchmark

This is for SHARE operator latency evaluation

* Migrate integral_image_op to main caffe2

migrate integral_image_op(GPU version) given by https://fburl.com/yvqezigi
to caffe2/caffe2/operators and implement its CPU version. Write up a test
using the hypothesis_test mechanism

* [pos_disc, fbcode] Implement unjoined lr loss

As explained in https://our.intern.facebook.com/intern/wiki/Model_Based_Calibration/, when the dataset is an joined data set, where labels might change later, we need to use unjoined logloss.

The implementation is almost the same as in Sigrid (https://fburl.com/1trngsls), where
    loss = y (log(p) - log(1-p)) + (1-y)(log(1-p)) = xy - (1-y)x - (1-y)log(1+exp(-x))

For x < 0, to ensure stability and avoid overflow, we reformulate the above exp as
    loss = xy - (1-y)x - (1-y)x + (1-y)log(1+exp(x)) = xy + (1-y)log(1+exp(x))

Then the final expression becomes
    loss = xy + (y - 1) x (x >= 0) - (1 - y) log(1 + exp(x - 2 x (x >= 0)))

where y is the true label, x is the dot product and p = logistic(x).

This kind of implementation is align with the current implementation of the original cross entropy in
https://phabricator.intern.facebook.com/diffusion/FBS/browse/master/fbcode/caffe2/caffe2/operators/cross_entropy_op.cc;0bae3b5d0f825897c5e0dd0ff10f489d7271bf25$7-13

* Keep the array to fix the conflict

* [C2] Compute Adagrad effective LR

The AdagradWithLR op outputs an extra blob which is contains the average effective learning rate across all weights in this blob.

* Open-source extractMetaNetDef & runGlobalInitialization, add new Predictor constructor from db file, and add run_map_outputs

1. Open-source extractMetaNetDef and runGlobalInitialization, for use in
2. new Predictor constructor from db file.
3. Add new run function that returns outputs as TensorMap

* Disable eigen cpu

Disable eigen cpu in transpose and reduce

* Introduce request_only/object_only property of ModelLayer

by default this is False

* A simple TC Caffe2 benchmark

We can run tunner, get MappingOptions and then use them to
compare against cuBLAS

currently broken due to LLVM issues. How to run:

hg checkout eec1ab31b59c03b8deded1c755a9abaf8c45be01
add D7401202
add D7434625
add D7506031
add D7540728

buck run @mode/dev-nosan tc/tc/benchmarks_python:caffe2_benchmark

* Move Caffe2 feature_maps_ops to open source

Need feature maps operators in open source project facebookresearch/BlueWhale

* Manually fix the conflicts in channel shuffle op

* Fix the inconsistency between different gh and fbcode

* Skip Adagrad GPU Test (Because some gpu implementation is missing)

* Fix another test to make sure it won't run on gpu when implementation is not available yet
2018-05-01 20:49:00 -07:00
ef8f556212 [Caffe2] Changes done inside Facebook (#6378)
* fix unit test for sqrt op

From the error logging:

[idx, grad, grad_estimate] are:
[[ 146.            0.5           0.45776367]
 [ 147.            0.5           0.45776367]

The gradient == 0.5 is correct, which means the SqrtOp and its gradient is doing right job. (Because y = sqrt(x), loss = y^2/2 = x/2, and then d(loss)/dx = 1/2 = 0.5; )

The test failed because of numerical problem of grad_estimate (in unit test). It can be because the step_size is small, and float precision is not high (when there are multiple elements in the tensor, we do sum(y^2) to compute loss)

This diff
- increase the step size, and also move the test cases to be further away from 0 (where sqrt(x) is not well defined) to be safe :)
- also clean up, and merge the test case for inplace Vs. non-inplace

Tested with:

`CAFFE2_HYPOTHESIS_PROFILE=debug ai_bt caffe2/caffe2/python/operator_test:elementwise_ops_test -- "test_sqrt"`

* CompositeReader & CompositeReaderBuilder

A new type of reader gluing multiple readers together.

* Back out "Revert D7394363: [GanH]: Log D Trick for Cross Entropy with Sigmoid"

Original commit changeset: 9325a4356dbe

* [dai][WIP] convert params to int8 on ps before sending to trainer

Add float->uint8 conversion in addition to float->fp16 conversion in model_saver.

* [easy] improve unit test for sparse length sum ops

as desc.

#accept2ship

* Update GitHub upstream to 771fcb3455cbfe69c2abcc4cb3bd7ef92d59af24

* move sparse hash unique ops to OOS and add unit tests

- move the SparseHash version to OOS, since 'sparsehash' is already deps of caffe2 OOS: https://fburl.com/arssw4n1
- The 'SparseHash' engine is also being used in OOS, so the SparseHash version shall be in OOS to reduce confusion: https://fburl.com/o5ea7ah2

- fix the CUDA UniqueOp for the case when batch is empty.
- add unit test

* group_norm_op for caffe2

This is the cuda op for Group Normalization (GN): https://arxiv.org/abs/1803.08494

This code implements GN in one op that computes Y=gamma * (X-mu) / sigma + beta and also its gradients. It is expected to have minimal memory consumption (similar to the BN op), without creating new blobs if GN were implemented as several ops (e.g., reshape, norm_mean/std, affine_channel).

* Resubmit D7405233: disappeared in D7464958

OOS publish causes the op missing -- however, test was still there

* [c2] add sparse hash engine for cuda unique op

The SparseHash version of UniqueOp copy input tensor to CPU, and make use of sparse hash map to get unique output, and then copy back to GPU.

* [dper][gpu] enable unit testing gpu trainer for sparse nn

to debug the GPU trainer using mock data in unit test.

make it easier to develop GPU trainer for new models.

* Reuse Gloo context for Synchronize() calls

Previously we were creating (and leaking) the Gloo context on each call to Synchronize(). Now only run the common world op and create the barrier net once, then run the barrier net on each Synchronize() call. Since timeout is associated with the Gloo context, assert that the timeout is fixed instead of trying to handle the complexity of multiple timeouts (and associated contexts).

* [GanH/WGAN][1/n]: add FC param clipping

as titled

* [mobile] minimizing changes between caffe2_benchmark and speed_benchmark

* [GanH]: enable diagnose within model

avoid finding blob names but to directly enable inside the model

* Add `net_transformer_fun` option to DPM

This callback allows for various transformations to be made to the
model after gradient operators have been added. The immediate motivation for
this is to allow transformations such has "checkpoint-and-recompute" which
allow trading off memory for additional compute.

Adding several callbacks like this has made DPM's API less than ideal at this
stage. However, I could not find any reasonable alternative.

* [DT] [33/n] Compile flow task groups

task groups need to compiled in order to pickle the object in fblearner. However I also changed the Job's compile function as creating new object is not necessary.

* Initial commit for sparse_normalize vectorization and benchmark

* [GanH]: LB Calibration for JSD

as titled

* Tracing event in async executor

Adding event tracing through TRACE_EVENT macro in async executor

* [Resubmit] D7409751 Reseting book-keeping blobs when the reservoir is reset

D7409751 got lost in D7464958

* Visualizing realtime weights values

we want to visualize the weights values as optimizer is iterating. This diff supports to visual the weights at an assigned index.
Currently, we assume the blob to be 2 dimensional.

* [GanH][Easy]: Fix Homotopy Weighting

apparantely, there was a bug in homotopy weight (alpha, beta) update

* [c2] move sparse hash unique op out of oss

so that oss do not need to depend on google hash map.

* Get rid of std::round as it's not supported on Android

* Revert changes on setup.py

* Skip shaky test on Dataio

* fix
2018-04-10 21:11:43 -07:00
1d5780d42c Remove Apache headers from source.
* LICENSE file contains details, so removing from individual source files.
2018-03-27 13:10:18 -07:00
0e0918cb9a dpm synchronize 2018-03-26 19:54:31 -07:00
29a4c942fe Add support for multi-device batch normalization through an option to data_parallel_model
Summary: Stage 3 in stack of diffs for supporting multi-device batch normalization. Adds input parameter to data_parallel_model to enable multi-device batch normalization. Depends on D6699258.

Reviewed By: pietern

Differential Revision: D6700387

fbshipit-source-id: 24ed62915483fa4da9b1760eec0c1ab9a64b94f8
2018-01-24 13:24:06 -08:00
2caca70a37 Allow shifting of activations / ops to other GPUs in data parallel model
Summary:
(Work in progress). This diff will allow shifting of activations to other GPUs, in case the model does not fit into memory. To see the API, check the code in data_parallel_model_test, which tests shifting two activations from 0 and 1 to gpu 4, and from gpu 2 and 3 to gpu 5.

I will need to further test on ResNets, and probablly add copy operations to handle device change points.

Reviewed By: asaadaldien

Differential Revision: D5591674

fbshipit-source-id: eb12d23651a56d64fa4db91090c6474218705270
2017-11-29 21:17:00 -08:00
14cc15e8f4 fixed NCCL bug in data_parallel_model.py
Summary:
Changed the dict of viewvalues into a python list

See issue: https://github.com/caffe2/caffe2/issues/1516
Closes https://github.com/caffe2/caffe2/pull/1532

Differential Revision: D6425901

Pulled By: akyrola

fbshipit-source-id: 37988abe29726aea86637e18eedb948b7c281008
2017-11-28 10:50:02 -08:00
4471e15b76 BMUF cpu support
Summary: change the interface so BMUF can run on cpus

Reviewed By: asaadaldien

Differential Revision: D6356026

fbshipit-source-id: f58a4da9f800d969145a1a376e118b0f3581f8c1
2017-11-19 23:41:25 -08:00
1a02e72254 fix missing DPM .values() and .keys() to viewvalues() and viewkeys()
Summary: Reported by SImon Layton from NVIDIA: we had a couple of py3-incompatible expresions in data_parallel_model

Reviewed By: azzolini

Differential Revision: D6349447

fbshipit-source-id: a09feb69396be43296400591a3bfed5b8c370b0d
2017-11-16 16:08:18 -08:00
e9cc41885e fix dynamic memory management for distributed execution
Summary: Dynamic memory management in Data Parallel Model was broken for distributed computation because it also the parameter gradients where freed after been used. That is problem with GLOO because it expects the tensors to have the same address over multiple calls. It is not a huge loss to remove parameter gradients from recycling as they are relatively small for typical convnets.

Reviewed By: asaadaldien

Differential Revision: D6314095

fbshipit-source-id: 949161d8c592927ae2fa82b3262b5f9ee47bed6f
2017-11-13 12:09:11 -08:00
cec27b8134 AddDistributedBlobsSync
Summary: Added a simple function to synchronize a blob across machines (but not across devices), i.e a blobs that are not synced over devices.

Reviewed By: yqwangustc

Differential Revision: D6192922

fbshipit-source-id: a4d653c9fb09f06b0c42330bdae07b42f5e6346c
2017-10-30 22:33:29 -07:00
2972a6ca02 Revert D6026557: [caffe2][PR] Fix "No handlers could be found for logger"
Summary:
This reverts commit 95c634872ac02be721257169e38c8fead04cd66b

bypass-lint

Differential Revision: D6026557

fbshipit-source-id: 663c28583ce3b01070ff5449115ed7e222f71776
2017-10-12 20:21:52 -07:00
d748c43f71 for dpm.GetLearningRateBlobNames
Summary:
I broke dpm.GetLearningRateBlobNames() when adding a new nodename param in optimizer.
Fixing it.

Reviewed By: asaadaldien

Differential Revision: D6043828

fbshipit-source-id: b3a79dd0dfae144187bcb359e2374eab6b32c485
2017-10-12 17:20:33 -07:00
75bece6ede Fix "No handlers could be found for logger"
Summary: Closes https://github.com/caffe2/caffe2/pull/1316

Differential Revision: D6026557

Pulled By: Yangqing

fbshipit-source-id: 95c634872ac02be721257169e38c8fead04cd66b
2017-10-10 22:32:13 -07:00
e13f199452 Switch RNNOp to use NetDef argument for step represenetation.
Summary: Before this diff RNNOp was using TextFormat for representing steps. This diff is changing RNNOp to prefer NetDef argument instead. To be backward compatible it supports TextFormat for existing models, though we can compile RNNs without TextFormat as well.

Reviewed By: salexspb

Differential Revision: D5949330

fbshipit-source-id: 9336a8f5ccf30ad8d8e3a7067b9437e1704b1c9f
2017-10-10 22:01:51 -07:00
8286ce1e3a Re-license to Apache
Summary: Closes https://github.com/caffe2/caffe2/pull/1260

Differential Revision: D5906739

Pulled By: Yangqing

fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
2017-09-28 16:22:00 -07:00
ec801d535c Fix typo in warning in data_parallel_model
Summary: Closes https://github.com/caffe2/caffe2/pull/1219

Differential Revision: D5898077

Pulled By: Yangqing

fbshipit-source-id: 7ee726ef3399a350a36e77093cbad0f70f8f3dce
2017-09-22 23:03:28 -07:00
c3a3d6ceba Add an option to use dynamic memory optimizer.
Reviewed By: akyrola

Differential Revision: D5869664

fbshipit-source-id: ab11bc27395bf10e8381ebf97e6afb83ae9af81f
2017-09-20 12:52:55 -07:00
9ec981b866 for CPU-data parallel, allow sharing model
Summary: On CPU, no need to replicate parameters. So try using only one copy (cpu_0) for parameters. Made resnet50_trainer use shared model in cpu mode.

Reviewed By: wesolwsk

Differential Revision: D5812181

fbshipit-source-id: 93254733edbc4a62bd74a629a68f5fa23f7e96ea
2017-09-15 16:19:37 -07:00
ce36a972b0 fix timeouts in CloneOrCreateCommonWorld
Summary: Default value for timeout in CreateOrCloneCommonWorld does not work properly: if the value of dpm._DEFAULT_TIMEOUT is changed, the default still stays as old 30s. Changed to use None instead as default.

Reviewed By: pietern

Differential Revision: D5813228

fbshipit-source-id: f617ceec40a03893c27d3e13c426e1ca6b2114e2
2017-09-12 13:09:05 -07:00
93bd3c77f8 AddBlobsSync()
Summary: Explicit function to sync blobs. Notice that this must be called before CreateNet(), and syncs the blobs every run.

Reviewed By: asaadaldien, jay-mahadeokar

Differential Revision: D5805891

fbshipit-source-id: 58a1bb47805d75d5cbead136e2e0e9fe663ea954
2017-09-12 10:33:22 -07:00
84167faf0f Enable use of GPUDirect through argument to Gloo AllreduceOp
Summary:
If the Gloo InfiniBand transport is used, the Gloo algorithms can use
GPUDirect to DMA directly from/to GPU memory. This is done through the
CudaDeviceWorkspace. This change adds a "gpu_direct" option to the
Allreduce operator that makes it use GPUDirect if the transport
supports it.
Closes https://github.com/caffe2/caffe2/pull/1203

Reviewed By: wesolwsk

Differential Revision: D5806366

Pulled By: pietern

fbshipit-source-id: 9e9a78f059f2b5c6e4fbf6574b7db4776a94696c
2017-09-11 13:02:58 -07:00
d43ab4bec5 Create Gloo common world through MPI rendezvous
Summary:
Before this change there were two ways for machines to rendezvous for a
distributed run: shared file system or Redis. If you're using an MPI
cluster it is much more convenient to simply execute mpirun and expect
the "right thing (tm)" to happen. This change adds the "mpi_rendezvous"
option to the CreateCommonWorld operator. If this is set, the common
world size and rank will be pulled from the MPI context and Gloo
rendezvous takes place using MPI. Note that this does NOT mean the MPI
BTL is used; MPI is only used for rendezvous.
Closes https://github.com/caffe2/caffe2/pull/1190

Reviewed By: akyrola

Differential Revision: D5796060

Pulled By: pietern

fbshipit-source-id: f8276908d3f3afef2ac88594ad377e38c17d0226
2017-09-08 17:18:47 -07:00
b8eb8ced7d Add transport/interface arguments to CreateCommonWorld operator
Summary:
These arguments control which Gloo transport (TCP or IB) and which
network interface is used for the common world. If not specified, it
defaults to using TCP and the network interface for the IP that the
machine's hostname resolves to.

The valid values for the transport argument are "tcp" and "ibverbs".
For ibverbs to work, Gloo must have been compiled with ibverbs
support. If Gloo is built as part of Caffe2 (sourced from the
third_party directory), then you can pass -DUSE_IBVERBS=ON to CMake to
enable ibverbs support in Gloo.
Closes https://github.com/caffe2/caffe2/pull/1177

Reviewed By: akyrola

Differential Revision: D5789729

Pulled By: pietern

fbshipit-source-id: 0dea1a115c729e54c5c1f9fdd5fb29c14a834a82
2017-09-08 10:57:41 -07:00
b7997a0f41 support device ids>10
Summary: Data parallel model failed with device numbers 10, 11.. because it used string sorting of the blob names. Changed to make sorting happen based on device number and then blob name. Also added reduction for 16 devices.

Reviewed By: wesolwsk

Differential Revision: D5781521

fbshipit-source-id: 16be0984ecb55340604c82893be366c0528e822c
2017-09-07 00:01:33 -07:00
6d5c3eaeb7 Add CloneCommonWorld op
Summary:
Cloning was previously done by overloading CreateCommonWorld op.
Closes https://github.com/caffe2/caffe2/pull/1159

Reviewed By: andrewwdye

Differential Revision: D5757580

Pulled By: pietern

fbshipit-source-id: 9e80b295e390bf92623bafb72be21cbafdcf2ff4
2017-09-06 13:32:30 -07:00
a7ec5def7b data_parallel_model names fix
Summary: Updated usage of deprecated functions in data_parallel_model.py

Reviewed By: akyrola

Differential Revision: D5738512

fbshipit-source-id: a7767e518da777ece058bcad480e5df1d91e9b42
2017-08-30 12:47:14 -07:00
7fad4be4c6 Device-specific memongering
Summary:
Enforce that blobs don't mix between operators on different GPUs or CPU/GPU. Add test.

+ Fix memonger when no namescope is provided.

Reviewed By: asaadaldien

Differential Revision: D5644708

fbshipit-source-id: 0cb361efd6361b6e2138462584bab6b4de039b5d
2017-08-17 13:31:26 -07:00
52befa4802 DataParallelModel: take param_init_net into account in _InferBlobDevice
Summary:
Here is my example:

For static RNN timestep is created as a part of param_init_net. Before DPM assumed that it is CUDA blob by default and it participated in broadcasting causing Copy on line 798 to fail. No device mapping is correct for this blob.

Reviewed By: akyrola

Differential Revision: D5631716

fbshipit-source-id: 28c3eb17ecc3080c95c41d69a60bf7262d3907d4
2017-08-15 12:06:46 -07:00
399fc9fb09 Added Nesterov
Summary: Added Nesterov momentum as an option for BMUF and corresponding tests

Reviewed By: asaadaldien

Differential Revision: D5599888

fbshipit-source-id: 30819c9e689347c8b75daddc7444bea9f54193ae
2017-08-11 13:52:43 -07:00
5c77cc8182 Exposing num_workers as parameter and enable recycling activations
Summary: as promised, a separate diff for dpm changes I made in experimental code

Reviewed By: pietern

Differential Revision: D5551304

fbshipit-source-id: 9013aeab6c388b1c415ffb2e36fb8dd6b8cf90b0
2017-08-08 19:48:41 -07:00
647f35e742 Fix SyncAllParamsDistributed for Python 3x
Summary:
In Python 3x dictionary values aren't a list and can't be concatenated to a list
this diff should fix that.

Reviewed By: andrewwdye

Differential Revision: D5576724

fbshipit-source-id: c60441857ceceb9c4a71122d2db5e9abad6d3fc2
2017-08-07 14:23:32 -07:00
26645154bb warn about using test/val model with init_params=True + fixed some cases
Summary: It is common mistake to create test/validation model with init_params=True. When its param_init_net is run, it will overwrite training models' params, and with DPM, those won't be synchronized to all GPUs. I don't want to make this an assertion yet, since it might break people's trainers (it is ok to have init_params=True if you never run the param_init_net...).

Reviewed By: asaadaldien

Differential Revision: D5509963

fbshipit-source-id: 63b1a16ec0af96e3790e226850f6e0e64689143f
2017-07-27 13:20:27 -07:00