Commit Graph

91 Commits

Author SHA1 Message Date
8f1c3c68d3 [BE] Use nested namespaces in .cpp/.cu files (#92100)
As we live in C++17 world

This is a functional no-op, just
- `s/namespace at { namespace native {/namespace at::native {/`
- `s/namespace torch { namespace jit {/namespace torch::jit {/`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92100
Approved by: https://github.com/izaitsevfb
2023-01-13 16:32:34 +00:00
eece6da162 [inductor] Reduce device context manager overhead (#91045)
This adds `torch.cuda._DeviceGuard` which is a stripped down version of
`torch.cuda.device` with lower overhead. To do this, it only accepts `int` as
the device so we don't need to call `_get_device_index` and is implemented
with a new C++ helper `torch._C._cuda_exchangeDevice` that allows
`_DeviceGuard.__enter__` to be just a single function call. On my machine,
I see a drop from 3.8us of overhead to 0.94 us with this simple benchmark:

```python
def set_device():
    with torch.cuda.device(0):
        pass

%timeit set_device()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91045
Approved by: https://github.com/ngimel, https://github.com/anijain2305
2023-01-12 16:51:59 +00:00
3916d7a575 Apply modernize-use-emplace to aten, c10, torch (#91077)
Apply clang-tidy check modernize-use-emplace. This is slightly more efficient by using an inplace constructor and is the recommended style in parts of the codebase covered by clang-tidy. This just manually applies the check to rest of the codebase. Pinging @ezyang as this is related to my other PRs he reviewed like #89000

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91077
Approved by: https://github.com/ezyang
2022-12-19 07:49:56 +00:00
59fe272c1e Fix: prefer .is_none() over .is(py::none()) for pybind11 (#88051)
Fixes minor perf regression I saw in #85688 and replaced throughout the code base. `obj == Py_None` is directly equivalent to is_none(). Constructing a temporary py::none() object needlessly incref/decref the refcount of py::none, this method avoids that and therefore is more efficient.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88051
Approved by: https://github.com/albanD
2022-10-31 16:41:27 +00:00
df69660832 Revert "Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"" (#82599)
This reverts commit 532b8a9e00d7eea2636e67621bfcfa34d9c85bcb.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82599
Approved by: https://github.com/albanD
2022-08-02 19:37:02 +00:00
f1a1356907 [ROCm] Enable/fix unit tests test_stream_args and test_event_args (#82346)
### Description
Removed some stubbed out code that was necessary for ROCm builds to support JIT compilation of Event and Stream classes. Original motivation for the code to be stubbed out in the ROCm case was likely due to this pull request:
https://github.com/pytorch/pytorch/pull/48020
In this PR, the include statement at the at the top of cuda.h was incorrectly pointed to aten/src/ATen/cuda/CUDAEvent.h when it should have been set to ATen/cuda/CUDAEvent.h. This error caused the hipification process of build_amd.py to not hipify this include statement correctly, causing errors. The include statement in question was subsequently fixed in the following commit:
acd072967a

This PR re-introduces the stubbed out code to the ROCm build and "unskips" the associated unit tests.

### Testing
Note: bullets prepended by ROCm were tested on systems with AMD GPUs while the others were tested with NVIDIA GPUs.
- apply commit
- (ROCm)`python tools/amd_build/build_amd.py`
- `python setup.py develop`
- (ROCm)`PYTORCH_TEST_WITH_ROCM=1 python test/test_jit.py TestCUDA.test_event_args`
- (ROCm)`PYTORCH_TEST_WITH_ROCM=1 python test/test_jit.py TestCUDA.test_stream_args`
- `python test/test_jit.py TestCUDA.test_event_args`
- `python test/test_jit.py TestCUDA.test_stream_args`
- Confirm tests pass in all scenarios

Pull Request resolved: https://github.com/pytorch/pytorch/pull/82346
Approved by: https://github.com/malfet
2022-08-01 22:55:15 +00:00
532b8a9e00 Revert "Add a lint rule for torch/csrc/util/pybind.h include (#82552)"
This reverts commit 9465c0e0b50f3c37bc150ef0016238ba33eca6f4.

Reverted https://github.com/pytorch/pytorch/pull/82552 on behalf of https://github.com/zengk95 due to This seems to be breaking windows binary wheels
2022-08-01 20:25:35 +00:00
9465c0e0b5 Add a lint rule for torch/csrc/util/pybind.h include (#82552)
We define specializations for pybind11 defined templates
(in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently
it is important that these specializations *always* be #include'd
when making use of pybind11 templates whose behavior depends on
these specializations, otherwise we can cause an ODR violation.

The easiest way to ensure that all the specializations are always
loaded is to designate a header (in this case, torch/csrc/util/pybind.h)
that ensures the specializations are defined, and then add a lint
to ensure this header is included whenever pybind11 headers are
included.

The existing grep linter didn't have enough knobs to do this
conveniently, so I added some features.  I'm open to suggestions
for how to structure the features better.  The main changes:

- Added an --allowlist-pattern flag, which turns off the grep lint
  if some other line exists.  This is used to stop the grep
  lint from complaining about pybind11 includes if the util
  include already exists.

- Added --match-first-only flag, which lets grep only match against
  the first matching line.  This is because, even if there are multiple
  includes that are problematic, I only need to fix one of them.
  We don't /really/ need this, but when I was running lintrunner -a
  to fixup the preexisting codebase it was annoying without this,
  as the lintrunner overall driver fails if there are multiple edits
  on the same file.

I excluded any files that didn't otherwise have a dependency on
torch/ATen, this was mostly caffe2 and the valgrind wrapper compat
bindings.

Note the grep replacement is kind of crappy, but clang-tidy lint
cleaned it up in most cases.

See also https://github.com/pybind/pybind11/issues/4099

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552
Approved by: https://github.com/albanD
2022-08-01 17:16:58 +00:00
ab2ca95dd1 turn on -Werror=unused-variable in our Bazel CPU build
Summary:
We also fix any existing issues. Note that we only do this for the CPU
build because nvcc is considered a C++ toolchain but it does not have
the same flag support. Adding flags to the GPU build will cause nvcc
errors.

Test Plan: Built locally, rely on CI to confirm.

Reviewers: malfet

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79156

Approved by: https://github.com/seemethere, https://github.com/osalpekar, https://github.com/albanD
2022-06-11 02:46:34 +00:00
0925597707 [JIT] Support for ParameterDict getattr
Adds support for scripting ParameterDicts and getattr() on them. It does
not support iterating on ParameterDicts because torch/nn/container.py
implementation of ParameterDict.items() uses a generator, which is not
supported by torchscript. torch/nn/container.py would need to be updated
so that iter gets correctly registered in python_sugared_value.cpp

Added a test in test_module_containers.py

Pull Request resolved: https://github.com/pytorch/pytorch/pull/77143

Approved by: https://github.com/eellison
2022-05-13 01:03:25 +00:00
82421b0fb8 [JIT] support parameterlist iteration
Followup to https://github.com/pytorch/pytorch/pull/75479.

This adds support for iterating through parameterlists

Pull Request resolved: https://github.com/pytorch/pytorch/pull/76140

Approved by: https://github.com/tugsbayasgalan
2022-04-21 18:51:27 +00:00
91e9fcf5b0 sup torch script parameterlist
Fixes #61176

Pull Request resolved: https://github.com/pytorch/pytorch/pull/75479
Approved by: https://github.com/davidberard98
2022-04-20 20:53:07 +00:00
ca056cc918 [AutoAccept][Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D35543681

fbshipit-source-id: 0453f35c2a39299df172dc2b4fc77fb73963bb97
(cherry picked from commit aae11d9628a1cf7fd88a2113191f31e979750bc8)
2022-04-11 13:48:41 +00:00
00d11de564 [JIT] Add support for closed over inf
Fixes https://github.com/facebookresearch/torchdynamo/issues/124
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75439
Approved by: https://github.com/anijain2305, https://github.com/davidberard98
2022-04-07 21:39:01 +00:00
9a8e605565 Add support for legacy tensor constructors in JIT (#74785)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74785

Fix for https://github.com/facebookresearch/torchdynamo/issues/93

Because the constructor follow a non-standard input schema (variadic integers), they are handled specially in ir_emitter.

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D35362762

Pulled By: eellison

fbshipit-source-id: 960badf08ba2ab0818af5fd331aff3542051250f
(cherry picked from commit bd579dead5a5206fc6e5b535ecf4f99ae67ee135)
2022-04-06 18:11:23 +00:00
763ad1bf25 (2/2) Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions: frontend change (#72899)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72899

Reland D33282878 (911d527b87). This is the frontend change.
ghstack-source-id: 149204031

Test Plan: Refer to D33282878 (911d527b87). Also check CI

Reviewed By: gmagogsfm

Differential Revision: D34252127

fbshipit-source-id: 27b17ddd4d05d904eb91fd9ee094d9121f00e388
(cherry picked from commit 1d276baca308110ac40111ccd622400b3bbdc864)
2022-02-16 03:45:15 +00:00
7db4a48d92 Revert D33342569: (2/2) Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions: frontend change
Test Plan: revert-hammer

Differential Revision:
D33342569 (856157fcee)

Original commit changeset: 57984ac67ae2

Original Phabricator Diff: D33342569 (856157fcee)

fbshipit-source-id: 4c12235a1776a3652e7f91e93b626705759d5176
(cherry picked from commit 4cbd7d8bab76fcf050e376c8528dba36541a779f)
2022-02-15 18:45:44 +00:00
856157fcee (2/2) Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions: frontend change (#70471)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70471

Reland D33282878 (911d527b87). This is the frontend change.
ghstack-source-id: 149114933

Test Plan: Refer to D33282878 (911d527b87). Also check CI

Reviewed By: gmagogsfm

Differential Revision: D33342569

fbshipit-source-id: 57984ac67ae2c56c38f72d3b1fb69105901fb472
(cherry picked from commit b47cc935ee1fd7aa63aa453a323a637bc2c22f3c)
2022-02-15 07:21:19 +00:00
a1383a9cfa Reland torch.ops API change machinery with the core functionality disabled (#71785)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71785

see https://github.com/pytorch/pytorch/pull/67254
ghstack-source-id: 147648699

Test Plan: github CI

Reviewed By: albanD

Differential Revision: D33777229

fbshipit-source-id: 517b36be9743025eb40d708d380dae62e3663184
(cherry picked from commit a637e695694d3fd615dbe821394bfe53d41b6901)
2022-02-02 16:06:29 +00:00
6964aa2ced backout D33469839 (#71443)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71443

cogwheel test inline_cvr_infer_canary_pyper_model_publish is timing out.

The convert_fx call takes > 20 mins for local and local_ro sub modules, which used to take ~ 2 mins.

Test Plan:
Fblearn flow run
* the following cmd took 1113 seconds before the diff and 5002 seconds after.
    flow-cli clone-locally 320014219  --run-as-secure-group pytorch_at_scale  --operators pyper_model_publish_workflow.pyper_model_publish_workflow.process_torch_package_model_files.process_non_sparse_parameters[0]

Cogwheel test
* Cogwheel test with packages in B3588 (the last good run) took 4694.48s
* Cogwheel test with packages in B3590 (the first timeout) took 13975.83s
* Cogwheel test with the following packages took 4535.04s
  * all packages in B3588 except the model publish
  * the model publish built with D33469839 (043e84b3d2) reversed (created D33633570)

Reviewed By: albanD, jerryzh168

Differential Revision: D33633570

fbshipit-source-id: dc5e777c48a90c551641a3f79126461f6a60449e
(cherry picked from commit 03ab65023a9f4175584ddac1cca7eab51397c84a)
2022-01-18 23:51:51 +00:00
fb8a9732d9 [AutoAccept][Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D33524330

fbshipit-source-id: 112291a23e2efe2d573bee86ead8ce2fc3957e5b
2022-01-11 04:33:21 -08:00
043e84b3d2 Per-overload torch.ops API (#67254)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67254

Fixes https://github.com/pytorch/pytorch/issues/65997

BC breaking:
`output = torch.ops._test.leaky_relu(self=torch.tensor(-1.0))` now fails with the error `TypeError: __call__() got multiple values for argument 'self'` since we call into `OpOverloadBundle`'s `__call__` method that has `self` bound to it as its first argument.

Follow up work:
1. disallow `default` as an overload name for aten operators.
2. Add a method to obtain a list of all overloads (exclude the ones registered by JIT)
3. Add methods/properties to `OpOverload` to access more schema information (types of input and output args etc)

cc ezyang gchanan

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D33469839

Pulled By: anjali411

fbshipit-source-id: c3fc43460f1c7c9651c64b4d46337be21c400621
2022-01-10 17:29:06 -08:00
402f2934bf Revert D33262228: Per-overload torch.ops API
Test Plan: revert-hammer

Differential Revision:
D33262228 (8e6d1738a4)

Original commit changeset: 600dbf511514

Original Phabricator Diff: D33262228 (8e6d1738a4)

fbshipit-source-id: 238fa88ea9c4f26c7511334765c07452fbca9655
2022-01-05 22:10:11 -08:00
8e6d1738a4 Per-overload torch.ops API (#67254)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67254

Fixes https://github.com/pytorch/pytorch/issues/65997

TODO: disallow `default` as an overload name for aten operators.

BC breaking:
`output = torch.ops._test.leaky_relu(self=torch.tensor(-1.0))` now fails with the error `TypeError: __call__() got multiple values for argument 'self'` since we call into `OpOverloadBundle`'s `__call__` method that has `self` bound to it as its first argument.

cc ezyang gchanan

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D33262228

Pulled By: anjali411

fbshipit-source-id: 600dbf511514ea9b41aea3e6b1bc1102dab08909
2022-01-05 15:17:41 -08:00
bf610f08b0 Back out "Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions"
Summary: as title

Test Plan:
```
buck run mode/opt-split-dwarf -c=python.package_style=inplace //ai_infra/distributed_ai/pyper_test_framework/templates:pyper_release_v2 -- --model inline_cvr_post_imp_deterministic_shrunk_pyper_release_v2 --cluster TSCTestCluster --hpc_identity oncall_pyper_oncall --stage prod_offline_training --test_module training_platform
...
############## Start inline_cvr_post_imp_model Test Results Analysis ##############
I1226 22:03:56.789000 3346280 test_driver.py:139  UNKNOWN     ] Test finished in 808.2743511786684 seconds.
+-------------------------+---------+------------------------+-----------------+
| Test Case               | Status  | Message                | Model Entity ID |
+-------------------------+---------+------------------------+-----------------+
| SmallWorld_release_test | Success | finished successfully. | 987987491       |
+-------------------------+---------+------------------------+-----------------+
I1226 22:03:56.790000 3346280 test_driver.py:143  UNKNOWN     ] test_run_id: 3d085f61-28d1-411d-bd27-940ea2554b23 use this id to find your run in scuba pyper_test_framework
I1226 22:03:56.792000 3346280 test_driver.py:160  UNKNOWN     ] Calling cleanup
I1226 22:03:56.792000 3346280 training_platform_test_launcher.py:385  UNKNOWN     ] Stopping launched jobs 1
I1226 22:03:59.563122 3346280 ClientSingletonManager.cpp:100] Shutting down Manifold ClientSingletonManager
```

Reviewed By: seemethere

Differential Revision: D33325936

fbshipit-source-id: 64414bf7061ad77e8ac12eb8abafee4043e0fa1e
2021-12-27 09:11:46 -08:00
911d527b87 Make TorchScript Preserve Fully Qualified Class Name for Python Exceptions (#70339)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70339

When a python program is translated to TorchScript, the python exception type is dropped. This makes users's life hard when they need to categorize errors based more than only exception message.

Here we make the change so when we raise a python exception, we record the fully qualified class name for the exception. Later on when the TorchScript is interpreted, a special exception CustomJITException is thrown. User can get the python class name from CustomJITException::getPythonClassName .

Note that, this diff does not customize the mapping from C++ exception to Python exception. It's left to the users to do whatever mapping they want.

Code under scripts/shunting are just my own experimental code. I can split them out if requested.
ghstack-source-id: 146221879

Test Plan: buck test mode/opt //caffe2/test:jit

Reviewed By: gmagogsfm

Differential Revision: D33282878

fbshipit-source-id: 910f67a764519f1053a48589d1a34df69001525d
2021-12-24 00:25:40 -08:00
b55a2500d2 [jit] Remove graph() call from abstract Function interface. (#65967)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65967

Graph is an implementation detail. If user wants to get access to the
underlying graph, they should be able to explicitly dynamic cast instead.
ghstack-source-id: 141659819

Test Plan: no behavior change.

Reviewed By: gmagogsfm

Differential Revision: D31326153

fbshipit-source-id: a0e984f57c6013494b92a7095bf5bb660035eb84
2021-10-27 11:54:26 -07:00
2d885ab73d [jit] Reduce refcounting of Types (#65345)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65345

FooType::get() can return a const reference. Inconveniently, converting shared_ptr<FooType> to shared_ptr<Type> requires a copy & refcount bump, so to properly take advantage of this in unshapedType() we need to take a const Type& in isSubtypeOf(), which is good practice anyway -- don't require a shared_ptr if you don't need to take ownership.
ghstack-source-id: 140044165

Test Plan:
CI

perf says c10::unshapedType time decreased from 2.8% to 2.2% during static runtime startup, though I expect this to be generally beneficial.

Reviewed By: hlu1

Differential Revision: D31027361

fbshipit-source-id: 676feb81db9f74ad7b8651d8774f4ecb4cfa6ab8
2021-10-08 09:03:04 -07:00
085e2f7bdd [ROCm] Changes not to rely on CUDA_VERSION or HIP_VERSION (#65610)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65610

- Replace HIP_PLATFORM_HCC with USE_ROCM
- Dont rely on CUDA_VERSION or HIP_VERSION and use USE_ROCM and ROCM_VERSION.

- In the next PR
   - Will be removing the mapping from CUDA_VERSION to HIP_VERSION and CUDA to HIP in hipify.
   - HIP_PLATFORM_HCC is deprecated, so will add HIP_PLATFORM_AMD to support HIP host code compilation on gcc.

cc jeffdaily sunway513 jithunnair-amd ROCmSupport amathews-amd

Reviewed By: jbschlosser

Differential Revision: D30909053

Pulled By: ezyang

fbshipit-source-id: 224a966ebf1aaec79beccbbd686fdf3d49267e06
2021-09-29 09:55:43 -07:00
0fbc471d10 Support default values on NamedTuple fields (#54682)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54682

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D27327241

Pulled By: ansley

fbshipit-source-id: 76546f1770d50ebc3435bba3b74540e3c6be8a1c
2021-06-26 15:18:21 -07:00
0b8931fe4b [torch][JIT] Predicate uses of RPC APIs on torch.distributed.rpc.is_available() (#58887)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58887

There are some callsites of `torch.distributed.rpc.XXX` APIs that are compiled
or not based on `USE_RPC`. However, `torch::deploy`, at least for now,
is compiled with `USE_RPC=1`, but the `torch.distributed.rpc.XXX` APIs used by
the aforementioned pieces of code are not available (i.e.
`torch.distributed.rpc.is_available()` returns `False`). This can cause
Torchscript compilation to fail, even if the code being compiled doesn't use
RPC.

This commit fixes this problem (at least temporarily) by predicating the use
all thse `torch.distributed.rpc` APIs on the value of
`torch.distributed.rpc.is_available()`.

Test Plan: Ran packaged XLM-R model with C++ benchmark.

Reviewed By: suo

Differential Revision: D28660925

fbshipit-source-id: fbff7c7ef9596549105e79f702987a53b04ba6f9
2021-05-24 21:53:53 -07:00
88c06d9dfc Add cuda device synchronization support in JIT (#55469)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55469

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D27749077

Pulled By: nikithamalgifb

fbshipit-source-id: bce3d331ab781cf3232b47b4f02ef504b9eadc7e
2021-04-14 09:13:07 -07:00
197f9f0826 Merge CUDA Streams and Events (#53902)
Summary:
-----------
- Updates current_stream and default stream API's to take `optional[device]` argument
- Adds parsing logic to replace `torch.cuda.Stream` and `torch.cuda.Event` -> `torch.classes.cuda.Stream` and `torch.classes.cuda.Event` for JIT
- Merges StreamContext manager for both Eager and JIT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53902

Test Plan:
------
Run JIT tests:
python test/test_jit.py -v TestCUDA

Run eager tests:
python test/test_cuda.py -v TestCuda

Reviewed By: glaringlee

Differential Revision: D27494627

Pulled By: nikithamalgifb

fbshipit-source-id: b30b0570e38a33fb335c83762eb06ffd46a44b5c
2021-04-05 08:19:55 -07:00
7fc03dd7c9 Back out "[pytorch][PR] Merge CUDA Streams and Events" (#54996)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54996

Original commit changeset: 45d9fee9a582

Test Plan: CI

Reviewed By: jspark1105

Differential Revision: D27444718

fbshipit-source-id: deb627230817923eaf84ade50ecb14bfbce4e779
2021-03-31 10:21:35 -07:00
1bccd48465 Allow creating SugaredValue for a complex valued IValue and deserialization logic for "infj" and "nanj" global constants (#54328)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54328

Test Plan: Imported from OSS

Reviewed By: nikithamalgifb

Differential Revision: D27369134

Pulled By: anjali411

fbshipit-source-id: aec26750a6fc8917ee15306684b743d13a91570c
2021-03-29 14:46:29 -07:00
416ba5c48f Merge CUDA Streams and Events (#53902)
Summary:
-----------
- Updates current_stream and default stream API's to take `optional[device]` argument
- Adds parsing logic to replace `torch.cuda.Stream` and `torch.cuda.Event` -> `torch.classes.cuda.Stream` and `torch.classes.cuda.Event` for JIT
- Merges StreamContext manager for both Eager and JIT.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/53902

Test Plan:
------
Run JIT tests:
python test/test_jit.py -v TestCUDA

Run eager tests:
python test/test_cuda.py -v TestCuda

Reviewed By: SplitInfinity

Differential Revision: D27285996

Pulled By: nikithamalgifb

fbshipit-source-id: 45d9fee9a582b5f4c82330f5f99eb88584804270
2021-03-26 14:19:39 -07:00
cfaa0bf286 [JIT] Update Namespace from cuda to _cuda (#53378)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53378

Test Plan: Imported from OSS

Reviewed By: navahgar

Differential Revision: D26970607

Pulled By: nikithamalgifb

fbshipit-source-id: 20a55dd9c0071c5870a4b176d30cb9c1e1496687
2021-03-11 00:52:01 -08:00
60ed8fb244 [JIT] Enable ModuleList non-literal indexing (#53410)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53410

**Summary**
This commit enables indexing into `ModuleList` using a non-literal
index if the LHS of the assignment statement of which the indexing is
the RHS is annotated with an interface type.

This feature already exists for `ModuleDict`, and this commit builds on
top of that implementation. A `prim::ModuleContainerIndex` operator is
emitted for any statement of the form `lhs: InterfaceType =
module_container[idx]`. The same operator has to be used for both
`ModuleDict` and `ModuleList` because serialization does not preserve
the metadata that indicates whether a `Module` is a `ModuleDict` or
`ModuleList`.

**Testing**
This commit extends the existing unit tests for non-literal `ModuleDict`
indexing to test non-literal `ModuleList` indexing.

**Fixes**
This commit fixes #47496.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D26857597

Pulled By: SplitInfinity

fbshipit-source-id: d56678700a264d79aae3de37ad6b08b080175f7c
2021-03-09 16:11:34 -08:00
73de98204d [JIT] Add static method support for TorchBind (#51177)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51177

**Summary**
This commit adds support for static methods to TorchBind. Just like
pybind, the API for declaring a static method is `def_static(...)`. A
static method must be called on the class directly, and can be called
both in Python as well as TorchScript.

Support for static methods is implemented in a manner similar to that of
instance methods. Registered static functions are wrapped in a layer of
unboxing logic, their schemas are inferred using templates and
metaprogramming, and they are added to the `ClassType` object
corresponding to the TorchBind class on which they are registered.
ScriptClass has been extended to support a `__getattr__` function so
that static methods of TorchBind classes can be invoked in Python. The
implementation of `__getattr__` returns `ScriptClassFunctionPtr`, a
version of `StrongFunctionPtr` without a compilation unit (since the
functions of a TorchBind class live inside the TorchBind registry).
Within TorchScript, TorchBind static functions are desugared in
`PythonClassValue::attr` by looking them up on the class type of the
`PythonClassValue` instance.

**Test Plan**
This commit adds a unit test that tests a simple static method on a
TorchBind class.

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D26356942

Pulled By: SplitInfinity

fbshipit-source-id: 1b6a9bc2e5f3e22071ad78e331a0201fbbf7ab30
2021-02-13 19:41:27 -08:00
1065c2d5b6 Fix clang-tidy warnings in python_sugared_value.{h,cpp} (#51703)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51703

Reviewed By: gchanan

Differential Revision: D26245798

Pulled By: gmagogsfm

fbshipit-source-id: 01620adca820968324687982cc48390ff9336d20
2021-02-04 21:29:40 -08:00
351ee1ece7 Remove duplicate check for THPLayout in toSugaredValue (#51543)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/51543

Reviewed By: Lilyjjo

Differential Revision: D26202297

Pulled By: gmagogsfm

fbshipit-source-id: f0d40c9d73b579a68e34c54b004d329fd3b76ff3
2021-02-02 12:34:29 -08:00
a722d28ef0 [WIP] JIT Static Hooks: adding hooks to class type and adding logic for hook running/compilation (#49544)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49544

Implementation of design laid out in: https://fb.quip.com/MY9gAqlroo0Z

Test Plan: Imported from OSS

Reviewed By: heitorschueroff

Differential Revision: D25771122

Pulled By: Lilyjjo

fbshipit-source-id: dc4a8461f71c58ae75144ca1477cd1c0e9f0f325
2021-01-20 09:09:30 -08:00
4a0d17ba2d [PyTorch][codemod] Replace immediately-dereferenced expect calls w/expectRef (#50228)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50228

`fastmod -m 'expect(<((at|c10)::)?\w+Type>\(\)\s*)->'
'expectRef${1}.'`
Presuming it builds, this is a safe change: the result of `expect()`
wasn't being saved anywhere, so we didn't need it, so we can take a
reference instead of a new `shared_ptr`.
ghstack-source-id: 119782961

Test Plan: CI

Reviewed By: SplitInfinity

Differential Revision: D25837374

fbshipit-source-id: 86757b70b1520e3dbaa141001e7976400cdd3b08
2021-01-13 16:13:55 -08:00
8530c65e25 [codemod][fbcode/caffe2] Apply clang-format update fixes
Test Plan: Sandcastle and visual inspection.

Reviewed By: igorsugak

Differential Revision: D25849205

fbshipit-source-id: ef664c1ad4b3ee92d5c020a5511b4ef9837a09a0
2021-01-09 14:37:36 -08:00
12b73fdbbf Adding JIT support for cuda streams and events (#48020)
Summary:
=======

This PR addresses the following:

 * Adds JIT support for CUDA Streams
 * Adds JIT support for CUDA Events
 * Adds JIT support for CUDA Stream context manager

Testing:
======

python test/test_jit.py -v TestCUDA

Pull Request resolved: https://github.com/pytorch/pytorch/pull/48020

Reviewed By: navahgar

Differential Revision: D25725749

Pulled By: nikithamalgifb

fbshipit-source-id: b0addeb49630f8f0c430ed7badeca43bb9d2535c
2020-12-29 20:24:57 -08:00
18eccfbe42 [JIT] Fix clang-tidy warnings in jit/python (#47985)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/47985

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D25258644

Pulled By: SplitInfinity

fbshipit-source-id: dfc15dc62c148f79f4e99fd058a6bf2d071ccbb5
2020-12-02 12:35:36 -08:00
dc0d68a1ee [JIT] Print out interface mismatch for prim::ModuleDictIndex (#47300)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47300

**Summary**
This commit augments the module interface subtyping check that is done
before the emission of the `prim::ModuleDictIndex` operator so that the
error message that is printed if the subtyping check fails provides more
information on which methods do not match.

**Test Plan**
Existing unit tests for `prim::ModuleDictIndex`. Compilation of `ModWithWrongAnnotation` now produces this error:
```
Attribute module is not of annotated type __torch__.jit.test_module_containers.ModuleInterface: Method on class '__torch__.jit.test_module_containers.DoesNotImplementInterface' (1) is not compatible with interface '__torch__.jit.test_module_containers.ModuleInterface' (2)
  (1) forward(__torch__.jit.test_module_containers.DoesNotImplementInterface self, Tensor inp) -> ((Tensor, Tensor))
  (2) forward(InterfaceType<ModuleInterface> self, Any inp) -> (Any)
:
```

Test Plan: Imported from OSS

Reviewed By: navahgar

Differential Revision: D24709538

Pulled By: SplitInfinity

fbshipit-source-id: 6b6cb75e4b2b12b08576a5530b4b90cbcad9b6e5
2020-11-03 13:07:21 -08:00
19ede75eb9 [JIT] Enable ModuleDict non-literal indexing (#45716)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45716

**Summary**
This commit enables indexing into `ModuleDict` using a non-literal
index if the `ModuleDict` is annotated with `Dict[str, X]`, where `X` is
a module interface type. These annotations must be expressed using a
class attribute named `__annotations__`, which is a `Dict[str, Type]`
where the keys are the names of module attributes and the values are
their types.

The approach taken by this commit is that these annotations are stored
as "hints" along with the corresponding module attributes in the
`ConcreteSubmoduleTypeBuilder` instance for each module (which might be
a `ModuleDict`). These hints are passed into the `ModuleValue` that is
created for desugaring operations on submodules so that indexing into a
`ModuleDict` can be emitted as a getitem op into a dict emitted into the
graph that represents the `ModuleDict`.

**Test Plan**
This commit adds unit tests to `TestModuleContainers` to test this
feature (`test_typed_module_dict`).

Differential Revision: D24070606

Test Plan: Imported from OSS

Reviewed By: ansley

Pulled By: SplitInfinity

fbshipit-source-id: 6019a7242d53d68fbfc1aa5a49df6cfc0507b992
2020-10-31 21:36:23 -07:00
dc8176356e Various cleanups to ir_emitter and friends (#46686)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46686

I was trying to page this code back in after a while and some things
stuck out as unnecessarily confusing.

1. Improve documentation of closures and fork stuff to be more accurate
to how we use them today.
2. Change `prim::LocalVariableScope` to `prim::ListComprehension`. It is
only ever used for a list comprehensions, and in general the nodes
emitted by `ir_emitter` should correspond to concrete operations or
language features rather than semantic constraints.
3. Change the somewhat mysterious "inputs" and "attributes" argument
names throughout the codebase to be the more obvious "args" and "kwargs"
that they generally represent (I think "inputs" and "attributes" come
from the AST naming).

Test Plan: Imported from OSS

Reviewed By: navahgar, jamesr66a

Differential Revision: D24464197

Pulled By: suo

fbshipit-source-id: 1f4b1475b58b5690a0b204e705caceff969533b4
2020-10-28 16:28:05 -07:00
f83cf2dab3 [JIT] adding torch.jit.isinstance support (#46062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46062

Adds support for torch.jit.isinstance in both eager and script mode

Example use:

```
import torch
from typing import Any, List

class TestModule(torch.nn.Module):
    def __init__(self):
        super(TestModule, self).__init__()

    def call(self, input1: str, input2: str) -> str:
        return input1

    def forward(self, input: Any) -> None:
        if torch.jit.isinstance(input, List[str]):
            for el in input:
                print(el)

TestModule().forward(["1","2"])
scripted_module = torch.jit.script(TestModule())
scripted_module(["1", "2"])
```

Test Plan: Imported from OSS

Reviewed By: bertmaher, zou3519

Differential Revision: D24264415

Pulled By: Lilyjjo

fbshipit-source-id: 039c95bddd854c414027ac8332832e6bc830b5b9
2020-10-20 16:47:49 -07:00