Summary:
/cc goldsborough
Working on #14582
The corresponding python implementations are at: [pytorch/torch/nn/init.py](6302e4001a/torch/nn/init.py (L261-L327))
Here is my initial implementation of Kaiming Initialization. I have not been able to figure out how to successfully run tests locally so I haven't added any yet.
A couple questions:
- Are the enums defined in the right place? I copied their names from Python, but do you prefer different naming conventions for C++?
- To run tests locally do I use `python setup.py test`? Can I run just a subset of the tests somehow?
- Should I add my tests at [test/cpp/api/misc.cpp](https://github.com/pytorch/pytorch/blob/master/test/cpp/api/misc.cpp#L47-L54)?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14718
Differential Revision: D14049159
Pulled By: goldsborough
fbshipit-source-id: 966ac5126875936e69b185b5041f16476ed4cf70
Summary:
libshm_manager doesn't need to depend on all of libtorch. It only uses tiny tempfile.h which can be moved to c10. I could just duplicate the file too, but it's not worth it as c10 is small enough.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17019
Differential Revision: D14052688
Pulled By: dzhulgakov
fbshipit-source-id: 8797d15f8c7c49c49d40b7ab2f43aa3bf6becb0c
Summary:
This PR adds Windows support for the C++ frontend. A lot of declarations were missing `TORCH_API` macros, and lots of code just did not compile on MSVC.
ebetica ezyang orionr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11716
Reviewed By: orionr
Differential Revision: D13038253
Pulled By: goldsborough
fbshipit-source-id: c8e5a45efd26117aeb99e768b56fcd5a89fcb9f8
Summary:
This is a pre-cursor diff to Python <-> C++ frontend integration -- I have a follow-up PR coming for that. This PR changes the C++ frontend module interface to replace the custom "cursor"s I introduced some time ago with `OrderedDict`. I introduced cursors at the time as a convenient way of applying functions and query operations on a modules' parameters, buffers and modules, allowing things like `module.parameters().map(my_func)`. However, I noticed that (1) this functionality is easily implement-able on top of a regular data structure and (2) more importantly, using OrderedDicts is much, much easier for Python integration. This is especially true given that ScriptModule today also uses OrderedDict. Since C++ frontend modules and ScriptModules will soon too share as many implementation details as possible, it is overall the best move to ditch the custom cursor datastructure and pervasively use OrderedDict everywhere.
For this I did:
1. Changed the C++ frontend module interface to more closely match the Python one by providing `parameters()`, `named_parameters()` and other methods Python provides. This is very important for the following diff which binds these into Python for inter-op with Python modules.
2. In lieu of the `Cursor::apply()` method I added `nn::Module::apply`. This again is one more unifying step between Python and C++, since Python modules have an apply function too.
3. Deleted all uses of Cursor.
4. Tidied and beefed up the `OrderedDict` class. In particular, I made `OrderedDict::Item` store an `std::pair` under the hood, because that is trivial to bind into Python and saved me a lot of headaches. `key` and `value` become methods instead of fields, which they should have been from the very start anyway because it allows exactly these kinds of changes, as per usual good software engineering principle of encapsulation.
5. Added many tests for the OrderedDict use in `nn::Module`.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13427
Differential Revision: D12894092
Pulled By: goldsborough
fbshipit-source-id: 715770c95a9643753a1db26d7f9da9a78619a15d
Summary:
In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions.
Note that since we're just talking about typedefs, this change does not break any existing code.
Once this lands I will update stuff in `pytorch/tutorials` too.
zdevito ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523
Differential Revision: D12942787
Pulled By: goldsborough
fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
Summary:
This PR is a large codemod to rewrite all C++ API tests with GoogleTest (gtest) instead of Catch.
You can largely trust me to have correctly code-modded the tests, so it's not required to review every of the 2000+ changed lines. However, additional things I changed were:
1. Moved the cmake parts for these tests into their own `CMakeLists.txt` under `test/cpp/api` and calling `add_subdirectory` from `torch/CMakeLists.txt`
2. Fixing DataParallel tests which weren't being compiled because `USE_CUDA` wasn't correctly being set at all.
3. Updated README
ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11953
Differential Revision: D9998883
Pulled By: goldsborough
fbshipit-source-id: affe3f320b0ca63e7e0019926a59076bb943db80
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10130
Update some include paths to make them internally consistent
Reviewed By: ezyang
Differential Revision: D9119906
fbshipit-source-id: b44e5cab8e8e795ee18afe9ffc6caf1f2b413467
Summary:
To allow our C++ customers to use our initialization methods as well, this PR moves some of the code from `torch.nn.init` to ATen, calls it from Python, and adds equivalent code to the C++ frontend.
Notes:
1. Happy to hear thoughts on whether it's ok to have e.g. `torch.nn.init.dirac_` *and* `torch.dirac_` (the former has a `no_grad` guard). We have this for `ones_` and stuff too, so I don't mind it.
2. I left the exception checking in Python because they throw `ValueError`s while ATen errors show as `RuntimeError`s. I imagine this would break users' error handling if someone were to have a `try`-`except` handler for `ValueError` (or maybe it's a far fetch)
EDIT: After discussions with zdevito, the PR now simply duplicates the code in C++ exclusively for the C++ API, and we leave the Python code as-is (to make it easier for people to read/modify).
ebetica ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9295
Differential Revision: D8813793
Pulled By: goldsborough
fbshipit-source-id: 4b969f3f75952c1be4e837e19e23b8098e5fbd4b
Summary:
Sets the random seed at the start of C++ tests so that everything is super deterministic.
I made sure we only generate random values from torch instead of `std::`, so that this seed always applies. I.e. I do:
```
torch::randint(2, {2}, at::kInt64)
```
instead of
```
std::rand() % 2
```
Also got rid of the tests that test the random seeding, since it would interfere here. And the test is not useful since we just use ATen's seeding mechanism, which should work.
Fixes #7288#7286#7289
ebetica ezyang
Closes https://github.com/pytorch/pytorch/pull/8903
Differential Revision: D8667269
Pulled By: goldsborough
fbshipit-source-id: a833e86e156d5e68dae8c53a4b1c433cb0608b6c
Summary:
This PR is the final step to making `torch::` the only namespace users of the C++ API ever see. Basically, I did:
``` cpp
namespace torch {
using namespace at;
}
```
And then changed `torch::` to `at::` almost everywhere. This worked surprisingly well out of the box. So users can now write `torch::relu` and `torch::log_softmax` and `torch::conv2d` instead of having to know when to use `at::` and when `torch::`. This is happy!
Another thing I did was to have `using Dtype = at::ScalarType`, which will be the eventual name anyway.
ebetica ezyang apaszke zdevito
Closes https://github.com/pytorch/pytorch/pull/8911
Reviewed By: ezyang
Differential Revision: D8668230
Pulled By: goldsborough
fbshipit-source-id: a72ccb70fca763c396c4b0997d3c4767c8cf4fd3
* Better forward methods in C++ API
capitalize error message in test_torch.test_flatten
Support for operator()
* Add operator() to Functional
* Get rid of SigmoidLinear
* Add BoundFunction to FunctionalImpl
* Remove macro from conv because it makes errors more nasty
* Created TORCH_MODULE macro
Rewrote Linear
Rewrote Dropout and added default constructor to TORCH_MODULE macro
Turned TORCH_MODULE contens into a proper base class
Added some documentation
Got rid of the old Dropout module
Got rid of the old Embedding module
Got rid of the old BatchNorm module
Got rid of the old Conv module
Fixing optimizers
Rebase
Removed old RNN modules and the TORCH_ATTR macro
Removed temporary P:: namespace
Added cloning behavior to all modules
Got rid of some get() calls
self review nits
Remove noexcept from ModuleHolder methods that can throw
Remove spaces
Add missing override to reset() methods
Added examples to documentation in pimpl.h
* Post rebase fixes
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions
* Add backward() to Tensor and Variable
* Add at:: in front of Tensor
* Trying to not move optional to appease windows?
* Move implementation into cpp file
* Undo some formatting changes
* Implemented fused builder based construction mechanism
* "weights" -> "weight"
* Use int64_t instead of size_t everywhere in RNN
* Extracted Conv::ExpandingSize into its own thing
* Rename TORCH_PARAMETER to TORCH_ATTR
* Added documentation
* Fix weight names in batchnorm module
* Rename autograd namespace to torch and change torch.h into python.h
* Pave the way for torch::nn::Module
* Reorganize module code structure
* Undo ONNX update
* Remove sleef submodule
* Rename autograd namespace to torch and change torch.h into python.h
* Include torch.h instead of python.h in test/cpp/api
* Change some mentions of torch.h to python.h in C++ extensions
* Set paths directly, without find_path