Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57985
Fixes https://github.com/pytorch/pytorch/issues/57756
This PR introduces a new `pyobj_interpreter_` field on TensorImpl which tracks what Python interpreter (if any) owns the TensorImpl. This makes it illegal to bind a TensorImpl from multiple Python interpreters, and means that we can now directly store PyObject pointer on TensorImpl even in the presence of multiple Python interpreters, as is the case in torchdeploy. This is a necessary step for PyObject preservation, which cannot be easily implemented when there are multiple Python interpreters.
Although the PR is not that long, there is a very subtle portion of the implementation devoted to ensuring that the tagging process is thread safe, since multiple threads can concurrently try to tag a PyObject. Check Note [Python interpreter tag] and Note [Memory ordering on Python interpreter tag] for detailed discussion of how this is handled. You will have to check this code carefully in code review; I did not torture test the multithreaded paths in any meaningful way.
In a follow up PR, I will pack the interpreter and PyObject fields into single atomic word on 64-bit.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: wconstab
Differential Revision: D28390242
Pulled By: ezyang
fbshipit-source-id: a6d9b244ee6b9c7209e1ed185e336297848e3017
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57733
I'm going to be modifying the APIs here, so the less API surface
covering these functions the better.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D28289082
Pulled By: ezyang
fbshipit-source-id: 4b71270bb82e0d6baa4dfed2f2e4ee8831f590b5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57544
Instead of removing tp_new from the superclass (which causes
super().__new__ to not work), I now still install tp_new on the
superclass, but verify that you are not trying to directly
construct _TensorBase.
Fixes https://github.com/pytorch/pytorch/issues/57421
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D28189475
Pulled By: ezyang
fbshipit-source-id: 9397a3842a77f5428d182dd62244b42425bca827
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57030
PR #57029 is not perfect; there are still obscure situations in which
we might allocate a shared_ptr to an RpcAgent that doesn't have a
no GIL constructor, so this PR adds the other half of the equation:
assert that we don't hold the GIL when running a blocking destructor.
This makes it possible to detect potential deadlocks even if the
code doesn't deadlock in practice (because you got lucky and none
of the threads you blocked on tried to also take out the GIL).
I considered whether or not to make this DEBUG_ONLY. For now it's
not, so I can get better CI coverage, and because this test only
happens in destructors of objects that die rarely.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D28030582
Pulled By: ezyang
fbshipit-source-id: a7d7f6545223c4823c7f6036dfe29bd2edaf60a5
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56150
See #56017 for full context; the short story is that by making
it illegal to directly construct _TensorBase, we need only
write a *single* tp_dealloc function which will work universally
for all _TensorBase subclasses, rather than having to write two
versions, one for _TensorBase itself, and others for Python subclasses
of _TensorBase. This means simpler code.
The subtlety here is that we only install our custom `tp_new` for direct subclasses of TensorBase. This is important, because overriding the `tp_new` also overrides any user defined constructor. Fortunately class Tensor(_TensorBase) has no nontrivial constructors and doesn't mind, but other subclasses like Parameter definitely mind!
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D28028746
Pulled By: ezyang
fbshipit-source-id: 3c03a14666ad1ded1145fe676afb0a7623cdb9bb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56147
This is support of #55686, you can see the broader context of the metaclass in
a more complete PR #56017. The short story is that in the future I want to
give Tensor a non-trivial metaclass, so to derisk the change first I give it a
trivial metaclass to shake out any bugs that might be caused by it. The
metaclass shouldn't have any performance impact on Tensor as it only gets
invoked upon subclass creation.
By the way, it was totally not documented how to create metaclasses in the Python
C API, and it took a good bit of trial error to figure it out (and the answer is
now immortalized in https://stackoverflow.com/q/67077317/23845 -- the things
that I got wrong in earlier versions of the PR included setting tp_basicsize
incorrectly, incorrectly setting Py_TPFLAGS_HAVE_GC on the metaclass--you want
to leave it unset so that it inherits, and determining that tp_init is what
actually gets called when you construct a class, not tp_call as another
not-to-be-named StackOverflow question suggests).
Aside: Ordinarily, adding a metaclass to a class is a user visible change, as
it means that it is no longer valid to mixin another class with a different
metaclass. However, because _C._TensorBase is a C extension object, it will
typically conflict with most other metaclasses, so this is not BC breaking.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D28028747
Pulled By: ezyang
fbshipit-source-id: c1e35a986aeb3db540c73d188f53dce951eeed33
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55799
I'm going to change the implementation of cdata soon so I need to
abstract over cdata access with a function. Additionally, many
users are casting manually casting to THPVariable to access
the member so I can remove these unsafe casts in the client code
(the implementation, of course, is still doing an unsafe cast.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D27712130
Pulled By: ezyang
fbshipit-source-id: 95fcc013bf3913d67f2c634068eb5b3aab144cb3
Summary:
Apple recently announced ML Compute, a new framework available in macOS Big Sur, which enables users to accelerate the training of neural networks on Mac hardware. This PR is the first on a series of PRs that will enable the integration with ML Compute. Most of the integration code will live on a separate subrepo named `mlc`.
The integration with `mlc` (ML Compute) will be very similar to that of xla. We rely on registering our ops through:
TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
m.impl_UNBOXED(<op_schema_name>, &customized_op_kernel)
...
}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50634
Reviewed By: malfet
Differential Revision: D26614213
Pulled By: smessmer
fbshipit-source-id: 3b492b346c61cc3950ac880ac01a82fbdddbc07b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51754
This API allows you to manage multiple python interpreters in a single
process to deploy PyTorch models packaged with torch.package.
torch/csrc/deploy/deploy.h contains the API definition
torch/csrc/deploy/test_deploy.cpp has some examples.
Notes:
* mutex is added to PyTorchStreamReader to make it safe to use from multiple threads at once.
* USE_DEPLOY is only true for the special libtorch_deployinterpreter.so library, when enabled
we use a hash table to maintain PyObject <> at::Tensor mappping rather than the internal pointer
in Tensor since >1 interpreter may have a reference to the tensor.
* serialization.py has some additional functions for creating pickle objects
but keeping storages in memory for use transfering tensors between interpreters
Test Plan: Imported from OSS
Reviewed By: wconstab
Differential Revision: D26329468
Pulled By: zdevito
fbshipit-source-id: d75f4ebb9a27f1d911179d9996041bcb3ca04a07
Summary:
Add a new device type 'XPU' ('xpu' for lower case) to PyTorch. Changes are needed for code related to device model and kernel dispatch, e.g. DeviceType, Backend and DispatchKey etc.
https://github.com/pytorch/pytorch/issues/48246
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49786
Reviewed By: mrshenli
Differential Revision: D25893962
Pulled By: ezyang
fbshipit-source-id: 7ff0a316ee34cf0ed6fc7ead08ecdeb7df4b0052
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48963
This PR makes the binding code treat `Parameter` the same way as `Tensor`, unlike all other `Tensor` subclasses. This does change the semantics of `THPVariable_CheckExact`, but it isn't used much and it seemed to make sense for the half dozen or so places that it is used.
Test Plan: Existing unit tests. Benchmarks are in #48966
Reviewed By: ezyang
Differential Revision: D25590733
Pulled By: robieta
fbshipit-source-id: 060ecaded27b26e4b756898eabb9a94966fc9840
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46356
Adding the flag `-Werror=cast-function-type` to ensure we don't allow
any invalid casts (ex: PyCFunction casts).
For more details see: https://github.com/pytorch/pytorch/issues/45419
ghstack-source-id: 114632980
Test Plan: waitforbuildbot
Reviewed By: albanD
Differential Revision: D24319759
fbshipit-source-id: 26ce4650c220e8e9dd3550245f214c7e6c21a5dc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227
Follow up from https://github.com/pytorch/pytorch/issues/45419, in
this PR I've removed as many PyCFunction casts as I could from the codebase.
The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS`
which have 3 parameters instead of 2 and had to be casted. Example: `
{"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS |
METH_KEYWORDS, nullptr},`
ghstack-source-id: 114632704
Test Plan: waitforbuildbot
Reviewed By: albanD
Differential Revision: D24269435
fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf
Summary:
This PR fixes unexpected `SystemError` when warnings are emitted and warning filters are set.
## Current behavior
```
$ python -Werror
>>> import torch
>>> torch.range(1, 3)
UserWarning: torch.range is deprecated in favor of torch.arange and will be removed in 0.5. Note that arange generates values in [start; end), not [start; end].
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
SystemError: <built-in method range of type object at 0x7f38c7703a60> returned a result with an error set
```
## Expected behavior
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UserWarning: torch.range is deprecated and will be removed in a future release because its behavior is inconsistent with Python's range builtin. Instead, use torch.arange, which produces values in [start, end).
```
## Note
Python exception must be raised if `PyErr_WarnEx` returns `-1` ([python docs](https://docs.python.org/3/c-api/exceptions.html#issuing-warnings)). This PR fixes warnings raised in the following code:
```py
import torch
torch.range(1, 3)
torch.autograd.Variable().volatile
torch.autograd.Variable().volatile = True
torch.tensor(torch.tensor([]))
torch.tensor([]).new_tensor(torch.tensor([]))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44371
Reviewed By: mrshenli
Differential Revision: D23598410
Pulled By: albanD
fbshipit-source-id: 2fbcb13fe4025dbebaf1fd837d4c8e0944e05010
Summary:
This is a follow-up PR for https://github.com/pytorch/pytorch/issues/37091, fixing some of the quirks of that PR as that one was landed early to avoid merge conflicts.
This PR addresses the following action items:
- [x] Use error-handling macros instead of a `try`-`catch`.
- [x] Renamed and added comments to clarify the use of `HANDLED_FUNCTIONS_WRAPPERS` in tests. `HANDLED_FUNCTIONS_NAMESPACES` was already removed in the last PR as we had a way to test for methods.
This PR does NOT address the following action item, as it proved to be difficult:
- [ ] Define `__module__` for whole API.
Single-line repro-er for why this is hard:
```python
>>> torch.Tensor.grad.__get__.__module__ = "torch.Tensor.grad"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method-wrapper' object has no attribute '__module__'
```
Explanation: Methods defined in C/properties don't always have a `__dict__` attribute or a mutable `__module__` slot for us to modify.
The documentation action items were addressed in the following commit, with the additional future task of adding the rendered RFCs to the documentation: 552ba37c05
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42806
Reviewed By: smessmer
Differential Revision: D23031501
Pulled By: ezyang
fbshipit-source-id: b781c97f7840b8838ede50a0017b4327f96bc98a
Summary:
According to pytorch/rfcs#3
From the goals in the RFC:
1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
(so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)
This PR makes the following changes:
1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.
TODO:
- [x] Sequence Methods
- [x] Docs
- [x] Tests
Closes https://github.com/pytorch/pytorch/issues/28361
Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091
Reviewed By: ngimel
Differential Revision: D22765678
Pulled By: ezyang
fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
Summary:
Update the API to access grad in cpp to avoid unexpected thread safety issues.
In particular, with the current API, a check like `t.grad().defined()` is not thread safe.
- This introduces `t.mutable_grad()` that should be used when getting a mutable version of the saved gradient. This function is **not** thread safe.
- The `Tensor& grad()` API is now removed. We could not do a deprecation cycle as most of our call side use non-const Tensors that use the non-const overload. This would lead to most calls hitting the warning. This would be too verbose for all the users.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40887
Reviewed By: ezyang
Differential Revision: D22343932
Pulled By: albanD
fbshipit-source-id: d5eb909bb743bc20caaf2098196e18ca4110c5d2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38490
A meta tensor is a tensor that is a lot like a normal tensor,
except it doesn't actually have any data associated with it.
You can use them to carry out shape/dtype computations without
actually having to run the actual code; for example, this could
be used to do shape inference in a JIT analysis pass.
Check out the description in DispatchKey.h for more information.
Meta tensors are part of a larger project to rationalize how we
write kernels so that we don't have to duplicate shape logic
in CPU kernel, CUDA kernel and meta kernel (this PR makes the
duplication problem worse!) However, that infrastructure can
be built on top of this proof of concept, which just shows how
you can start writing meta kernels today even without this
infrastructure.
There are a lot of things that don't work:
- I special cased printing for dense tensors only; if you try to
allocate a meta sparse / quantized tensor things aren't going
to work.
- The printing formula implies that torch.tensor() can take an
ellipsis, but I didn't add this.
- I wrote an example formula for binary operators, but it isn't
even right! (It doesn't do type promotion of memory layout
correctly). The most future proof way to do it right is to
factor out the relevant computation out of TensorIterator,
as it is quite involved.
- Nothing besides torch.add works right now
- Meta functions are ALWAYS included in mobile builds (selective
build doesn't work on them). This isn't a big deal for now
but will become more pressing as more meta functions are added.
One reason I'm putting up this PR now is to check with Yinghai Lu
if we can unblock shape inference for accelerators, while we are
still working on a long term plan for how to unify all shape
computation across our kernels.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21935609
Pulled By: ezyang
fbshipit-source-id: f7d8636eeb8516b6bc296db99a16e56029972eee
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39033
Added `real` and `imag` views as tensor attributes. Right now, tensor.imag is disabled for real tensors. This is because if we return a new tensor of zeros, the user would be able to update the tensor returned by tensor.imag which should not be allowed as numpy returns a read-only array, and pytorch doesn't support read-only tensors yet.
TODO in follow-up PRs:
1. add a setter for `real` and `imag`
2. add special case in codegen for `real` and `imag` backward functions.
3. remove `copy_real` and `copy_imag` methods.
Test Plan: Imported from OSS
Differential Revision: D21767542
Pulled By: anjali411
fbshipit-source-id: 539febf01f01ff055e3fbc7e9ff01fd3fe729056
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37527
This is yet another place that needs to be updated for adding a new "Backend" and is unnecessary. Instead, just use layout_from_backend and have a map from Layout -> THPLayout.
Other changes:
- rename torch::getDtype and torch::getLayout to torch::getTHPDtype and torch::getTHPLayout since e.g. for layout you are both passing in and returning a "layout" type.
- add NumOptions to Layout to match the dtype/ScalarType formulation.
Test Plan: Imported from OSS
Differential Revision: D21309836
Pulled By: gchanan
fbshipit-source-id: ede0e4f3bf7ff2cd04a9b17df020f0d4fd654ba3
Summary:
This PR renames `at::Tensor::base()` to `at::Tensor::_base()`, to achieve parity with Python `torch.Tensor._base` API.
----
This PR is BC-breaking in the following way:
Previously, to get the tensor that this tensor is a view of, the user would call `tensor.base()` in C++. Now, they must call `tensor._base()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33316
Differential Revision: D19905687
Pulled By: yf225
fbshipit-source-id: 949d97b707b2c82becb99ac89e9ac24359d183e6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117
After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.
I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```
Test Plan: - wait for CI
Differential Revision: D18934952
Pulled By: zou3519
fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894
This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.
Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros
Reasons for not removing the macros:
- potential for feature flagging
Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.
In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.
[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.
[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.
Test Plan: - wait for CI
Differential Revision: D18858543
Pulled By: zou3519
fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.
I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281
Differential Revision: D18830818
Pulled By: ezyang
fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.
Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095
Differential Revision: D18301806
Pulled By: ezyang
fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29667
Some previous implementations are defined in native_functions.yaml.
In this case, I don't define them explicitly in Tensor; instead
they are placed in VariableTypeManual.cpp. When I did this, I would
have deleted documentation; instead, this documentation was moved
to native_functions.yaml
This also replaces `current_version` with just `_version`.
This is a carved out portion of #28287, rebased past Tensor-Variable
merge.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18504934
Pulled By: ezyang
fbshipit-source-id: be7adf45b637daffe2b0b1631eb31d967525fc31
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29665
Our intention is to merge the static distinction between Tensor and
Variable. Ordinarily, this would entail merging the methods of Tensor
and Variable. But there are a lot of "private"-ish methods on Variable
that we don't actually want to dump onto the Tensor class. So, as prep
work, we move all of those methods off of Variable and into
the torch::autograd::impl namespace (impl as in, please don't use this
end users). This ends up being a fairly large patch because all of
the call sites have to play ball too.
While I was on the topic, I also moved any of the touched functions into
the C++ file, so that modifying them would not trigger a recompilation of
all of torch.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18496169
Pulled By: ezyang
fbshipit-source-id: afb203252620ec274be596b3e7b1d84d321bad3a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29653
I didn't remove is_variable from Tensor for BC reasons, but I did
remove as many uses as I could from the codebase.
at::impl::variable_excluded_from_dispatch got moved to TensorBody.h
so that it's more widely accessible.
This diff is NOT semantics preserving. Here are the major differences:
- In a number of native operator implementations, we tested that arguments
are not variable. I replaced these with asserts that variable is
excluded from dispatch. I actually don't think these asserts are really
necessary now (they should certainly be true, but it's hard to get
it wrong), but I've kept them for old time's sake. At least, they'll detect
if you call these functions before you've processed variable (indicating
a bug in your kernel.)
- There are a number of places where we do a per-tensor test for being a
variable, for better error reporting when someone commits Tensor/Variable
confusion. Although these tests are substantively the same as the
tests above, in these cases I decided to *delete* the test entirely.
The reasoning is that in these cases, we didn't really care about
dispatch (also, see above; I'm not too sure we really need the dispatch
asserts), we cared about Tensor/Variable confusion. Since Tensor/Variable
confusion is impossible now, we don't need the tests. One of the key
factors which pushed me one way or another was whether or not a function
was doing per-tensor validation; if I kept the assert in such functions,
I'd repeatedly access the TLS. Even if we want to bring back the asserts,
they would have to go somewhere else.
Another similar idiom is the number of places we do !x.defined() ||
x.is_variable(); I treated this equivalently.
- nuclear_norm's computation of compute_uv is a bit weird, but I think
it's OK to just delete the is_variable case (I *suspect* that it is
always the case that self.is_variable(), but it doesn't really matter.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18496168
Pulled By: ezyang
fbshipit-source-id: 5a1ded931e0c10a6b758ba64a8380d34110e0c3e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29213
A trivial use of make_variable is one where requires_grad=False. This
transformation is not technically semantics preserving, as make_variable
will create a shallow copy of the tensor in question; however, I
am guessing that we have the invariant that we don't actually make
use of this shallow copy in a nontrivial way.
There were some cases where the surrounding code expected a Variable proper
to be returned; I retained those sites.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353503
Pulled By: ezyang
fbshipit-source-id: 57fe34d82e009c0cc852266fb0b79d6d9c62bb03