Fixes https://github.com/pytorch/pytorch/issues/140229
Fixes https://github.com/pytorch/pytorch/issues/139474
The issue was that:
(1) DDPOptimizer has some logic to partition the dynamo graph into buckets, and run AOTAutograd/inductor on each bucket
(2) doing so requires knowing the **exact** strides of the outputs of each subgraph, so we can have example inputs (with correct strides) to each of the later subgraphs to compile with
(3) there is some existing logic to do this today: we have a `fakify_first_call` flag in AOTAutograd that lets you run it with fake tensor inputs (to handle the calling convention changes that AOTAutograd performs at runtime). During this process, we query inductor for the output strides that it compiled with
(4) these outputs strides are stored in the FX graph cache as raw strings of sympy expressions. We have a function, `evaluate_symexpr`, which given the sympy string, and the ShapeEnv's `var_to_val` mapping, will evaluate the sympy string to generate concrete strides
(5) evaluating this expression will specialize on the exact values of any variables in our shape env, however. In DDPOptimizer, we want to know what inductor's stride outputs are symbolically. This requires converting the (string) sympy expression into actual `SymInts` that we can return.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140751
Approved by: https://github.com/eellison
- Set the dtype of "acc" appropriately so that epilogue fusion will have args with dtype
- Update dtype propagation to use `type_to_dtype` instead of instantiating tensor
- Throw if we have a string arg where we should have a proper CSEVariable, unless we're doing the Modification Subgraph thing which is nyi. everything else is appropriately typed (cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov @drisspg ).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141991
Approved by: https://github.com/drisspg
ghstack dependencies: #139945, #140057, #141495, #141882
- Add in upcast_compute_type on creation of new tensors (loads, constants)
- Fixes index_expr - right now we are sort of inconsistent in dtype and dont always respect the dtype specified. would be nice to fix but not doing in this pr.
- bug fix in view dtype where we were always upcasting back to fp32 when input was in bf16/fp16. we should only be doing that if the output is also in bf16/fp16.
- for masked, avoid calling dtype propagation and just use output dtype.
Turns on the runtime dtype verification for opinfo tests. The separate test file is still useful because we can use it for testing turning off codegen_upcast_to_fp32.
Follow ups:
- We could consider requiring less explicit upcast_compute_types calls and do it automatically. That would potentially make things easier but be less flexible in the future. Maybe I should have done it this pr.
- Be more consistent on our index expr dtype printing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141495
Approved by: https://github.com/blaine-rister, https://github.com/arui-meta, https://github.com/ezyang
ghstack dependencies: #139945, #140057
This turns on AOTAutogradCache for all inductor tests. It clears AOTAutogradCache on each test as well, by virtue of the local cache using the same directory to store cache entries.
I've also tested with INDUCTOR_TEST_DISABLE_FRESH_CACHE=1, running all the tests. AOTAutogradCache successfully caches 99% of these. There are a few tests that use view_replay and therefore save functional tensors, which cause AOTAutogradCache to fail to pickle its result. Will look into next steps there, but for now, it seems okay if the cache just misses on those cases where it can't serialize the result. It would be better to check before pickling, though.
I've made the following small bugfixes to get this working:
- Inductor is sometimes used in a standalone mode without dynamo, which leads to attribute errors in check_can_cache. In general, we should *never* crash in cache checking, only bypass. So I change a try catch to check Exception instead of just a specific exception.
- Add extra structured logging for metadata on cache hits
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140890
Approved by: https://github.com/bdhirsh
A couple changes.
- Tries to reuse dtype propagation rules that were already registered in inductor. These were present both with `pointwise_overrides_data` and the `boolean_ops` list. Additionally, the registration of pointwise ops already specified dtype propagation rules. Saves those registrations and reuses them later.
- Factors out `get_promoted_dtype` which uses functools.lru_cache to take in non - CSEVariable args because those will not work with the functools cache.
Tests get added later in the stack when everything is implemented.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139945
Approved by: https://github.com/blaine-rister, https://github.com/arui-meta, https://github.com/ezyang
Previously, we tried to sort SymInt strides to determine the stride
order. This PR makes the sorting more unbacked symint aware: given a Tensor
with sizes (u0, u1, u2), it has strides (u1 * u2, u1, 1), which is
sortable under the guard_size_oblivious assumptions.
Test Plan:
- test case
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137063
Approved by: https://github.com/eellison
This split in JKs was never actually used (We just set both JKs to the same values except when we accidentally didn't due to being humans who make mistakes). This simplifies the overall JK structure and eventually, will let us delete the duplicate JK
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137501
Approved by: https://github.com/oulgen
Type annotations for compile_fx.
- Some of the stuff here is pretty complicated (functions which return functions that take functions) so I bailed on those and used `Any` just to get the rest landed.
- There are also changes to type signatures in other files which I did just to let mypy know more about the types in compile_fx.py.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138033
Approved by: https://github.com/Skylion007
**Summary**
Previously, we assumed the packed weight for (`MKL/MKLDNN`) linear operations was at `new_input_nodes[1]`. However, this is not the case for `MKL linear`, where `new_input_nodes[1]` contains the original weight instead of the packed weight. To generalize the code, in this PR, we identify nodes that are present in `input_nodes` but not in `new_input_nodes`—indicating they are no longer used by the GEMM template and can be considered candidates for deletion.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135101
Approved by: https://github.com/jgong5, https://github.com/jansel
Previously, all integer inputs to user-defined triton kernels were assumed to be int32. This would result in errors if your input was actually an int64.
This PR checks the value to determine which dtype to use for indexing: if it is known to be < int_max, then use int32 (and add guards if relevant); if we can't check (e.g. unbacked symint), then use int64.
Differential Revision: [D63797975](https://our.internmc.facebook.com/intern/diff/D63797975)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137234
Approved by: https://github.com/eellison
Summary:
# Context
Goal: Enable CK for Inductor in FBCode
We split this stack into three diffs to help with review & in case we need to revert anything.
# This Diff
* Gets us to have CK kernels as an option for GEMM autotuning in Inductor.
Reviewed By: zjing14
Differential Revision: D62662705
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136234
Approved by: https://github.com/tenpercent, https://github.com/chenyang78