Commit Graph

106 Commits

Author SHA1 Message Date
f1d636f85b [BE] detect CXX pytree requirement with TorchVersion (#151102)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151102
Approved by: https://github.com/zou3519
2025-05-01 18:55:57 +00:00
447f8241f5 [export][function schema] support exporting hop with function schema argument (#152073)
We need to make function schema proxyable to trace a the auto_functionalized hop that takes function schema as inputs.  The implementation basically follows how we support torchbind object:

1. upon seeing an untracked function schema arg, we creates a constant get_attr node
2. we track the function schema argument in export to support lift/unlift.
3. we need to support serde for functional schema. We'll add support for this in follow-up PRs.

However, compared with torchbind object:
1. we don't need a dynamo implementation, because the function schema is added when we auto_functionalize a hop to the argument of auto_functionalized. One potential use case is users re-traces an exported program with strict mode. Since non-strict is the default now, we don't see a use case yet.
2. we don't need an inductor implementation, because the function schema will go away after auto_functionalized re-inplacing pass.

edit: we greatly simplifies (and generalizes) the implementation following @zou3519 's suggestion of using pytree.register_constant

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152073
Approved by: https://github.com/zou3519
ghstack dependencies: #152072
2025-05-01 05:22:02 +00:00
f1f18c75c9 Gracefully handle optree less than minimum version, part 2 (#151257)
If optree is less than the minimum version, we should pretend it doesn't
exist.

The problem right now is:
- Install optree==0.12.1
- `import torch._dynamo`
- This raise an error "min optree version is 0.13.0"

The fix is to pretend optree doesn't exist if it is less than the min
version.

There are ways to clean up this PR more (e.g. have a single source of
truth for the version, some of the variables are redundant), but I am
trying to reduce the risk as much as possible for this to go into 2.7.

Test Plan:

I verified the above problem was fixed. Also tried some other things,
like the following, which now gives the expected behavior.
```py
>>> import torch
>>> import optree
>>> optree.__version__
'0.12.1'
>>> import torch._dynamo
>>> import torch._dynamo.polyfills.pytree
>>> import torch.utils._pytree
>>> import torch.utils._cxx_pytree
ImportError: torch.utils._cxx_pytree depends on optree, which is
an optional dependency of PyTorch. To u
se it, please upgrade your optree package to >= 0.13.0
```

I also audited all non-test callsites of optree and torch.utils._cxx_pytree.
Follow along with me:

optree imports
- torch.utils._cxx_pytree. This is fine.
- [guarded by check] f76b7ef33c/torch/_dynamo/polyfills/pytree.py (L29-L31)

_cxx_pytree imports
- [guarded by check] torch.utils._pytree (changed in this PR)
- [guarded by check] torch/_dynamo/polyfills/pytree.py (changed in this PR)
- [guarded by try-catch] f76b7ef33c/torch/distributed/_functional_collectives.py (L17)
- [guarded by try-catch] f76b7ef33c/torch/distributed/tensor/_op_schema.py (L15)
- [guarded by try-catch] f76b7ef33c/torch/distributed/tensor/_dispatch.py (L35)
- [guarded by try-catch] f76b7ef33c/torch/_dynamo/variables/user_defined.py (L94)
- [guarded by try-catch] f76b7ef33c/torch/distributed/tensor/experimental/_func_map.py (L14)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151257
Approved by: https://github.com/malfet, https://github.com/XuehaiPan
2025-04-15 13:08:26 +00:00
061832bc7a Gracefully handle optree less than minimum version (#150956)
Summary:
- We are saying the minimum version of pytree that PyTorch can use is
  0.13.0
- If a user imports torch.utils._cxx_pytree, it will raise an
  ImportError if optree doesn't exist or exists and is less than the
  minimum version.

Fixes https://github.com/pytorch/pytorch/issues/150889. There are
actually two parts to that issue:
1. dtensor imports torch.utils._cxx_pytree, but the optree installed in
   the environment might be too old. Instead, raising ImportError in
   torch.utils._cxx_pytree solves the issue.
2. We emit an "optree too low version" warning. I've deleted the
   warning in favor of the more explicit ImportError.

Test Plan:
- code reading
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150956
Approved by: https://github.com/albanD, https://github.com/atalman, https://github.com/XuehaiPan
2025-04-10 01:22:50 +00:00
60fe0922f6 [pytree] Register normal class to register_dataclass (#147752)
Fixes https://github.com/pytorch/pytorch/pull/147532#discussion_r1964365330

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147752
Approved by: https://github.com/zou3519
2025-04-01 23:28:20 +00:00
a10b765bf1 [pytree] add APIs to determine a class is a namedtuple or PyStructSequence (#113257)
Changes in this PR:

1. Add `is_structseq` and `is_structseq_class` functions to determine a object or a class is PyStructSequence.
2. Add a generic class `structseq` which can be used as the registration key for PyStructSequence types like `namedtuple` for Named Tuple types.
3. Change `is_namedtuple` to accept subclasses of namedtuple to be namedtuple. Before this PR, only namedtuple class directly created by `collections.namedtuple` or `typing.NamedTuple` were namedtuple classes while their subclasses were not. This PR makes `is_namedtuple` return true for subclasses of namedtuple class.

Resolves #75982. New tests are included in this PR.

- #75982

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113257
Approved by: https://github.com/zou3519
2025-04-01 10:40:43 +00:00
f9b4856989 Revert "[pytree] add APIs to determine a class is a namedtuple or PyStructSequence (#113257)"
This reverts commit c95a6b416b4d1b830535f82e2719c055d077cbad.

Reverted https://github.com/pytorch/pytorch/pull/113257 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking internally. @zou3519 can you please help land this internally? See the sigmoid tests in D71198793 for details. To validate the fixes internally, you can follow the instructions here: https://fburl.com/fixing-ghfirst-reverts ([comment](https://github.com/pytorch/pytorch/pull/113257#issuecomment-2725982539))
2025-03-14 23:13:34 +00:00
c95a6b416b [pytree] add APIs to determine a class is a namedtuple or PyStructSequence (#113257)
Changes in this PR:

1. Add `is_structseq` and `is_structseq_class` functions to determine a object or a class is PyStructSequence.
2. Add a generic class `structseq` which can be used as the registration key for PyStructSequence types like `namedtuple` for Named Tuple types.
3. Change `is_namedtuple` to accept subclasses of namedtuple to be namedtuple. Before this PR, only namedtuple class directly created by `collections.namedtuple` or `typing.NamedTuple` were namedtuple classes while their subclasses were not. This PR makes `is_namedtuple` return true for subclasses of namedtuple class.

Resolves #75982. New tests are included in this PR.

- #75982

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113257
Approved by: https://github.com/zou3519
2025-03-14 08:50:30 +00:00
ebd087e4b5 Revert "[pytree] add APIs to determine a class is a namedtuple or PyStructSequence (#113257)"
This reverts commit f08146b67bab331f7bdc9fa247f526f6e60a7190.

Reverted https://github.com/pytorch/pytorch/pull/113257 on behalf of https://github.com/jovianjaison due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/113257#issuecomment-2711299830))
2025-03-10 17:19:21 +00:00
aebd2e411f [pytree][easy] lock global registry containers properly for thread-safety (#148750)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148750
Approved by: https://github.com/StrongerXi
2025-03-07 20:04:52 +00:00
f08146b67b [pytree] add APIs to determine a class is a namedtuple or PyStructSequence (#113257)
Changes in this PR:

1. Add `is_structseq` and `is_structseq_class` functions to determine a object or a class is PyStructSequence.
2. Add a generic class `structseq` which can be used as the registration key for PyStructSequence types like `namedtuple` for Named Tuple types.
3. Change `is_namedtuple` to accept subclasses of namedtuple to be namedtuple. Before this PR, only namedtuple class directly created by `collections.namedtuple` or `typing.NamedTuple` were namedtuple classes while their subclasses were not. This PR makes `is_namedtuple` return true for subclasses of namedtuple class.

Resolves #75982. New tests are included in this PR.

- #75982

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113257
Approved by: https://github.com/zou3519
2025-03-06 18:59:02 +00:00
ad9a10aff0 [dynamo] Make nonstrict_trace work with some pytree.register_constant-ed instances (#148007)
As title, this enables `nonstrict_trace`-ed function to take in object
whose type has been `pytree.register_constant`-ed, as long as the object
existed outside the `torch.compile` region. This also forces Dynamo to
emit a `EQUALS_MATCH` guard on the object.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148007
Approved by: https://github.com/zou3519
ghstack dependencies: #148385
2025-03-05 21:28:26 +00:00
f46f0e465c [dynamo] Initial support for nonstrict_trace (#146367)
## Context
> **Note:** `mark_traceable` got renamed to `nonstrict_trace` after
> offline discussion. The reasons are (1) it aligns with `torch.export`'s
> `nonstrict` notion, and (2) it's more definitive in behavior suggestion.

1. [Overall Design](https://docs.google.com/document/d/1O-dR2ZQaJQVt_v67AVcDCw2yJLtqgkZFwoXK0buEWRg/edit?tab=t.0)
2. [Dynamo graph representation with `torch._higher_order_ops.flat_apply`](https://docs.google.com/document/d/1YHl5nPTJvYeCPE5TO9uA18DPWNgUYGE4gCn6bFvXcBM/edit?tab=t.0#heading=h.xtw3hhbro4gn)

## Summary
This patch adds a `torch._dynamo.nonstrict_trace` decorator, which
currently is an enhanced version of `torch._dynamo.allow_in_graph` (see
docstring for their differences). Specifically, this patch focuses on
the UI and functionality prototyping/plumbing.

The main enhancement is supporting more input types, and the
implementation challenge lies in reconstructing the input objects from
Dynamo `VariableTracker` (while accounting for buffered side-effects and
guards).  This patch takes a middle-ground (simple implementation with a
bit of user labor), by
1. asking the user to provide pytree registration for non-proxy-able
   input types,
2. letting Dynamo trace through `pytree_flatten` (which accounts for
   buffered side-effects and guards automatically),
3. and passing in the TreeSpec as a graph attribute constant into
   `torch._higher_order_ops.flat_apply` (which unflattens the inputs and
   invokes the underlying function).

## Next Steps
In subsequent patches, we will try to support the following:
- annotating on class method
- reads to global tensors
- inputs that contains `pytree.register_constant`-ed instances.
- function as input
- more output types (e.g., any pytree-registered type)
- `torch.nn.Module` as inputs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146367
Approved by: https://github.com/zou3519
ghstack dependencies: #146714
2025-02-26 19:47:39 +00:00
a821d69d92 Fix register constant to be usable in exportz (#147533)
Differential Revision: [D69939737](https://our.internmc.facebook.com/intern/diff/D69939737)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147533
Approved by: https://github.com/zou3519
2025-02-25 21:10:47 +00:00
b5d7aefa57 [BE] add missing overload annotations for tree_map_only (#147699)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147699
Approved by: https://github.com/Skylion007
2025-02-23 20:21:07 +00:00
908133f682 [TreeSpec] Add custom comparision function (#146442)
Summary:
https://github.com/pytorch/pytorch/pull/145815 used caching to for treespec_loads calculation to speed up AOTI module call.

However, this made tests flaky due when comparing TreeSpec for objects in local scope. ie. 'test_export.TestExport.test_pytree_register_nested_data_class.<locals>.Inner'

Type comparison will yield False when local scopes are different due to lru_cache.

Since this comparison is only used for testing purpose, we will only test if str(type) are equal.

Test Plan:
```
PYTORCH_TEST_WITH_ROCM=1 python test/export/test_retraceability.py
```

Differential Revision: D69137706

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146442
Approved by: https://github.com/angelayi
2025-02-07 22:39:21 +00:00
0f768c7866 Barebones flat_apply HOP (#146060)
This PR:
- adds pytree.register_constant for registering a class to be treated as
  a constant by torch.compile/torch.fx
- adds a very barebones flat_apply HOP. This should be sufficient to get
  mark_traceable working. A lot more work is necessary to get the custom
  operator case working (when make_fx sees a custom operator with PyTree
  arg types, it needs to emit a call to the flat_apply HOP).
- I expect the flat_apply HOP to change a lot, I want to ship this in
  the current state to unblock the mark_traceable and custom ops
  work.

Test Plan:
- It's kind of difficult to test the barebones flat_apply HOP "works" so
  I added a really simple test.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146060
Approved by: https://github.com/StrongerXi, https://github.com/yanboliang
ghstack dependencies: #146059
2025-02-01 16:17:48 +00:00
373606928b Add torch.utils._pytree.register_dataclass (#146059)
This is an API that registers a dataclass as a pytree node.
It directly calls torch.export.register_dataclass, but we should
eventually inline that implementation here. I want to use this API for
something in compile and feel weird calling
torch.export.register_dataclass.

Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146059
Approved by: https://github.com/StrongerXi, https://github.com/angelayi, https://github.com/yanboliang
2025-02-01 16:17:48 +00:00
eeb5e1bf20 [AOTI] Cache treespec_loads calculation (#145815)
Summary: Treespec can be reused instead of calculated from str every AOTI module call. Using cached result saves 0.2ms for each module call.

Test Plan:
Before:
{F1974751578}

After:
 {F1974751667}

Differential Revision: D68749539

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145815
Approved by: https://github.com/henrylhtsang
2025-01-31 06:38:21 +00:00
7178b827d7 PEP585: Missed conversions (#145342)
Differential Revision: [D68785969](https://our.internmc.facebook.com/intern/diff/D68785969)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145342
Approved by: https://github.com/bobrenjc93
2025-01-29 05:24:36 +00:00
2f9d378f7b PEP585 update - torch/utils (#145201)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145201
Approved by: https://github.com/bobrenjc93
2025-01-21 21:04:10 +00:00
cf05f6a134 [BE]: Improve typing for torch/fx/_pytree.py and torch/utils/_pytree.py (#145173)
Improve type inference in _pytree.py utility functions

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145173
Approved by: https://github.com/bobrenjc93
2025-01-20 22:18:19 +00:00
53256edff9 [export] Support module inputs for non strict mode. (#143925)
Summary:
Add experimental support for torch.nn.Module as input types.

Before this change, we don't support module inputs but recently we saw some interesting use cases like gpt-fast https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py#L68 where we directly pass in a module input for different variants of the same models.

Since we don't really care about non-param or non-buffer states in non strict mode, we don't care about those either and pretend they are like plain constants during tracing. We treat any module input like a nested container of tensor, and each time we will automatically register a pytree handler for these module types to flatten its state dict into a group of tensors. We will just inline any module method call during tracing like we did for `self` module in export_for_training. This will make input modules' behavior very similar to the training module in typical case, except that we don't record the inputs as parameter or buffers but rather just plain user inputs.

Test Plan: buck run mode/opt caffe2/test:test_export -- -r test_module_input

Differential Revision: D67680827

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143925
Approved by: https://github.com/tugsbayasgalan
2025-01-16 17:30:36 +00:00
f013cfee38 [TreeSpec] Support enum in defaultdict (#144235)
Summary: Followup from D66269157, add support for enum in defaultdict.

Test Plan: Added unit test

Differential Revision: D67832100

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144235
Approved by: https://github.com/henrylhtsang, https://github.com/houseroad
2025-01-07 00:10:46 +00:00
b77406a9ec [BE][CI] bump ruff to 0.8.4 (#143753)
Changes:

1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
2024-12-24 12:24:10 +00:00
d47a80246a [dynamo][pytree][3/N] make CXX pytree traceable: tree_map / tree_map_ (#137399)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137399
Approved by: https://github.com/jansel
ghstack dependencies: #137398
2024-12-12 18:05:25 +00:00
7edeb1005a [dynamo][pytree][2/N] make CXX pytree traceable: tree_flatten / tree_unflatten / tree_structure (#137398)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137398
Approved by: https://github.com/jansel
2024-12-12 18:05:25 +00:00
0bd7b7ae58 Add version check for C++ pytree availability (#142299)
Resolves #142256

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142299
Approved by: https://github.com/jansel, https://github.com/weifengpy
2024-12-08 06:27:32 +00:00
30d907c6fb When serializing treespec context, support enum as well (#141525)
Following https://github.com/pytorch/pytorch/pull/102716, per @angelayi's suggestion.

Note that in general enum as an input is not supported.

repro:
```
class TestEnum(enum.Enum):
    A = auto()
    B = auto()

    @staticmethod
    def from_string(s):
        return TestEnum[s.upper()]

class M(torch.nn.Module):
    def forward(self, x, en):
        return x.clone()

input1 = (
    torch.rand(10, device="cuda"),
    {TestEnum.A: torch.rand(10, device="cuda")},
)
inputs = [input1]
model = M().cuda()

_ = model(*input1)

ep = torch.export.export(model, input1, strict=False)
path = torch._inductor.aot_compile(ep.module(), input1)
```

Differential Revision: D66269157
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141525
Approved by: https://github.com/angelayi
2024-12-04 03:08:50 +00:00
12e95aa4ee [BE]: Apply PERF401 autofixes from ruff (#140980)
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-11-20 17:52:07 +00:00
9bbe4a67ad [dynamo] support maxlen for collections.deque (#138194)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138194
Approved by: https://github.com/jansel, https://github.com/malfet
2024-10-30 10:08:02 +00:00
480ae51f85 [pytree] Only import optree if it's used (#131478)
torch.utils._pytree imports optree if it's available. Instead, we change
it to if it gets used. The motivation for this is better isolation.

Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131478
Approved by: https://github.com/albanD
2024-07-24 00:10:49 +00:00
67ef2683d9 [BE] wrap deprecated function/class with typing_extensions.deprecated (#127689)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

Resolves #126888

- #126888

This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127689
Approved by: https://github.com/Skylion007
2024-06-02 12:30:43 +00:00
033e733021 Revert "[BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)"
This reverts commit 749a132fb0a8325cbad4734a563aa459ca611991.

Reverted https://github.com/pytorch/pytorch/pull/126898 on behalf of https://github.com/fbgheith due to switching typing-extensions=4.3.0 to 4.9.0 causes internal failure ([comment](https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456))
2024-05-31 19:47:24 +00:00
749a132fb0 [BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.

Resolves #126888

- #126888

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
2024-05-29 12:09:27 +00:00
3b0f6cce5c [pytree] freeze attributes of TreeSpec (#124011)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124011
Approved by: https://github.com/zou3519
2024-05-22 05:57:00 +00:00
2e48f7b044 [pytree] add tree_iter function (#123913)
- Add a new `tree_iter` function.
- Bump `optree` version to `0.11.0` for C++ version of `tree_iter`.

This PR is split from #120300.

- #120300

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123913
Approved by: https://github.com/zou3519
2024-04-16 06:02:08 +00:00
9bb54c7f3c [pytree] enable functools.wraps in Python pytree with dynamo (#124012)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124012
Approved by: https://github.com/Skylion007
2024-04-14 09:25:05 +00:00
1be2126ff6 [pytree] Fix namedtuple serialization (#123388)
Summary:
Previously we were serializing namedtuple treespecs incorrectly:
```python
Point = namedtuple("Point", ["x", "y"])
p = Point(1, 2)
flat, spec = pytree.tree_flatten(p)

print(flat)  # [1, 2]
print(spec)  # TreeSpec(type=namedtuple, context=Point, children=[*, *])

dumped_spec = pytree.treespec_dumps(spec)
print(dumped_spec)
"""
We only serialize the name of the class and the fields of the namedtuple:

TreeSpec {
  type='collections.namedtuple',
  context={class_name='Point', class_fields={'x', 'y'}},
  children=[Leaf, Leaf]
}
"""

reconstructed_spec = pytree.treespec_loads(dumped_spec)
print(reconstructed_spec)
"""
When we load, we create a new namedtuple class containing the same fields as before,
but the is class is now a completely different class than the original one:

TreeSpec(type=namedtuple, context=torch.utils._pytree.Point, children=[*, *])
"""

spec == reconstructed_spec  # False
```

So, we introduce a new API called `pytree._register_namedtuple` where users can pass in the serialized name for each namedtuple class:
```python
Point = namedtuple("Point", ["x", "y"])
pytree._register_namedtuple(Point, "Point")

p = Point(1, 2)
flat, spec = pytree.tree_flatten(p)

print(flat)  # [1, 2]
print(spec)  # TreeSpec(type=namedtuple, context=Point, children=[*, *])

dumped_spec = pytree.treespec_dumps(spec)
print(dumped_spec)
"""
TreeSpec {
  type='collections.namedtuple',
  context='Point',
  children=[Leaf, Leaf]
}
"""

reconstructed_spec = pytree.treespec_loads(dumped_spec)
print(reconstructed_spec)  # TreeSpec(type=namedtuple, context=Point, children=[*, *])

spec == reconstructed_spec  # True
```

Test Plan: `python test/test_pytree.py`

Differential Revision: D55771058

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123388
Approved by: https://github.com/zou3519
2024-04-08 20:55:19 +00:00
cbbc309cae [pytree][reland] Require pytree serialized_type_name (#120636)
Relanding https://github.com/pytorch/pytorch/pull/119718 as the diff which prevents breakages of torchrec [D53857843](https://www.internalfb.com/diff/D53857843) has landed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120636
Approved by: https://github.com/avikchaudhuri
2024-02-27 06:53:33 +00:00
be0ee93467 [pytree] support X | Y union type in tree_map_only (#120389)
Follow-up PR for #119974 with some small tweaks.

1. Support `X | Y` union type for Python 3.10+
2. Enable predicate function in `tree_map_only` in CXX pytree.
3. Remove unnecessary function definition.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120389
Approved by: https://github.com/zou3519
2024-02-22 18:17:13 +00:00
2e77629b9f [pytrees] Allow tree_map_only to support predicate function as filter (#119974)
In many places in the code we use `tree_map_only((SymInt, SymBool, SymFloat), foo)` but with nested ints, it is possible to have SymInts that are non-symbolic, so we may want to do something like `tree_map_only(is_symbolic, foo)` instead.

Alternative: wrap nested int SymNodes with something other than SymInt.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119974
Approved by: https://github.com/zou3519
ghstack dependencies: #119661
2024-02-21 21:10:02 +00:00
a1fc29cd78 Revert "[pytree] add function tree_iter (#120155)"
This reverts commit 372d078f361e726bb4ac0884ac334b04c58179ef.

Reverted https://github.com/pytorch/pytorch/pull/120155 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/120155#issuecomment-1955479765))
2024-02-21 00:21:28 +00:00
372d078f36 [pytree] add function tree_iter (#120155)
Fixes #119768

- #119768

This PR adds a new function `tree_iter` that lazily iterates over the tree leaves. It is different than the `tree_leaves` function while the latter traversal the whole tree first to build a list of leaves.

```python
for leaf in tree_iter(tree):
    ...
```

is much more efficient than:

```python
for leaf in tree_leaves(tree):
    ...
```

where `tree_leaves(tree)` is `list(tree_iter(tree))`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120155
Approved by: https://github.com/vmoens
2024-02-18 09:16:50 +00:00
3f4dd9bfa4 Back out "[pytree] Require serialized_type_name" (#120041)
Summary:
D53785493 breaks apf.rec.ir.tests.ir_export_deserialize_test.IRExportDeserializeTest: test_export_deserialize_ebc failed:

https://www.internalfb.com/sandcastle/workflow/3436246515685789584

Test Plan: buck2 test mode/opt apf/rec/ir/tests:ir_export_deserialize_test

Differential Revision: D53834881

Co-authored-by: Wilson Hong <wilsonhong@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120041
Approved by: https://github.com/ydwu4
2024-02-16 10:02:25 +00:00
b4c7afe101 [pytree] Require serialized_type_name (#119718)
Differential Revision: [D53785493](https://our.internmc.facebook.com/intern/diff/D53785493)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119718
Approved by: https://github.com/suo
2024-02-15 20:32:44 +00:00
42062e2622 [pytree][BE] update treespec is_leaf() access (#116371)
Change `isinstance(treespec, LeafSpec) -> treespec.is_leaf()`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116371
Approved by: https://github.com/zou3519
2024-01-27 11:44:57 +00:00
80cf0ce153 Enhance torch.vmap support from inside torch.compile (#116050)
This work rewrites vmap support in torch.compile by inlining most of
the frames into the existing FX graph. It also unlocks to PyTorch to
support features that were previously missing, such as keyword args.

Fixes: https://github.com/pytorch/pytorch/issues/114306

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116050
Approved by: https://github.com/zou3519
2024-01-22 17:53:45 +00:00
suo
e732adf0a7 [pytree] add access api (#117771)
This PR introduces an API to use KeyPaths to actually access values on pytrees.

Differential Revision: [D52881260](https://our.internmc.facebook.com/intern/diff/D52881260/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117771
Approved by: https://github.com/zou3519, https://github.com/XuehaiPan
2024-01-20 04:03:26 +00:00
c0940d2e93 [pytree] reuse flatten_fn in flatten_with_keys_fn to ensure consistency (#117656)
Reuse `flatten_fn` in `flatten_with_keys_fn` to ensure `flatten_fn` and `flatten_with_keys_fn` get the same `leaves` and `context`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117656
Approved by: https://github.com/suo
2024-01-17 20:38:49 +00:00