Commit Graph

52657 Commits

Author SHA1 Message Date
767199fd9b [flex_attention] replace sliced BlockMask noop with helpful error (#164702)
Fixes part of #163314

After slicing BlockMask with `[]`, mask_mod was silently replaced with noop_mask. This caused silent incorrect results when users applied transformations to `sliced_mask.mask_mod`.

Replace noop with `_sliced_mask_mod_error` that raises RuntimeError with guidance to use `base_mask.mask_mod` instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164702
Approved by: https://github.com/drisspg, https://github.com/BoyuanFeng
2025-10-20 03:46:16 +00:00
e8cb34dd52 [Inductor] support masked vectorization for the tail_loop for fp8 datatype (#163324)
**Summary:**
Support masked vectorization for the tail_loop for fp8 datatype.

**Example:**
```
import torch

def fn(
    x,
    scale,
    zero_point,
    quant_min,
    quant_max,
    dtype,
):
    x = torch.ops.quantized_decomposed.dequantize_per_tensor(
        x,
        scale,
        zero_point,
        quant_min,
        quant_max,
        dtype,
    )
    x = torch.relu(x)
    x = torch.ops.quantized_decomposed.quantize_per_tensor(
        x, scale, zero_point, quant_min, quant_max, dtype
    )
    return x

quant_min = -128
quant_max = 127
dtype = torch.float8_e4m3fn
x = torch.clamp(torch.randn((1, 7, 7, 9), dtype=torch.float32) * 100, quant_min, quant_max).to(dtype)
zero_point = 100
scale = 0.01

with torch.no_grad():
    compiled_fn = torch.compile(fn)
    compiled_fn(x, scale, zero_point, quant_min, quant_max, dtype)
```

**Generated code:**

- Before
```
cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0 = async_compile.cpp_pybinding(['const at::Float8_e4m3fn*', 'at::Float8_e4m3fn*'], r'''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(const at::Float8_e4m3fn* in_ptr0,
                       at::Float8_e4m3fn* out_ptr0)
{
    {
        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(441L); x0+=static_cast<int64_t>(16L))
        {
            {
                if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(432L)))
                {
                    auto tmp0 = at::vec::Vectorized<at::Float8_e4m3fn>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                    auto tmp1 = at::vec::convert<float>(tmp0);
                    auto tmp2 = static_cast<float>(100.0);
                    auto tmp3 = at::vec::Vectorized<float>(tmp2);
                    auto tmp4 = tmp1 - tmp3;
                    auto tmp5 = static_cast<float>(0.01);
                    auto tmp6 = at::vec::Vectorized<float>(tmp5);
                    auto tmp7 = tmp4 * tmp6;
                    auto tmp8 = (tmp7);
                    auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0));
                    auto tmp10 = tmp9 * tmp3;
                    auto tmp11 = tmp10.round();
                    auto tmp12 = tmp11 + tmp3;
                    auto tmp13 = static_cast<float>(-128.0);
                    auto tmp14 = at::vec::Vectorized<float>(tmp13);
                    auto tmp15 = at::vec::maximum(tmp12, tmp14);
                    auto tmp16 = static_cast<float>(127.0);
                    auto tmp17 = at::vec::Vectorized<float>(tmp16);
                    auto tmp18 = at::vec::minimum(tmp15, tmp17);
                    auto tmp19 = at::vec::convert<at::Float8_e4m3fn>(tmp18);
                    tmp19.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                }
                if(C10_UNLIKELY(x0 >= static_cast<int64_t>(432L) && x0 < static_cast<int64_t>(441L)))
                {
                    for (int64_t x0_tail = static_cast<int64_t>(432L);x0_tail < static_cast<int64_t>(441L); x0_tail++)
                    {
                        auto tmp0 = in_ptr0[static_cast<int64_t>(x0_tail)];
                        auto tmp1 = c10::convert<float>(tmp0);
                        auto tmp2 = static_cast<float>(100.0);
                        auto tmp3 = float(tmp1 - tmp2);
                        auto tmp4 = static_cast<float>(0.01);
                        auto tmp5 = float(tmp3 * tmp4);
                        auto tmp6 = c10::convert<float>(tmp5);
                        auto tmp7 = std::max(tmp6, decltype(tmp6)(0));
                        auto tmp8 = float(tmp7 * tmp2);
                        auto tmp9 = std::nearbyint(tmp8);
                        auto tmp10 = float(tmp9 + tmp2);
                        auto tmp11 = static_cast<float>(-128.0);
                        auto tmp12 = max_propagate_nan(tmp10, tmp11);
                        auto tmp13 = static_cast<float>(127.0);
                        auto tmp14 = min_propagate_nan(tmp12, tmp13);
                        auto tmp15 = c10::convert<at::Float8_e4m3fn>(tmp14);
                        out_ptr0[static_cast<int64_t>(x0_tail)] = tmp15;
                    }
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (1, 7, 7, 9), (441, 63, 9, 1))
        buf0 = empty_strided_cpu((1, 7, 7, 9), (441, 63, 9, 1), torch.float8_e4m3fn)
        # [Provenance debug handles] cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0:1
        cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0(arg0_1, buf0)
        del arg0_1
        return (buf0, )
```
- After
```
cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0 = async_compile.cpp_pybinding(['const at::Float8_e4m3fn*', 'at::Float8_e4m3fn*'], r'''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(const at::Float8_e4m3fn* in_ptr0,
                       at::Float8_e4m3fn* out_ptr0)
{
    {
        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(441L); x0+=static_cast<int64_t>(16L))
        {
            {
                if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(432L)))
                {
                    auto tmp0 = at::vec::Vectorized<at::Float8_e4m3fn>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                    auto tmp1 = at::vec::convert<float>(tmp0);
                    auto tmp2 = static_cast<float>(100.0);
                    auto tmp3 = at::vec::Vectorized<float>(tmp2);
                    auto tmp4 = tmp1 - tmp3;
                    auto tmp5 = static_cast<float>(0.01);
                    auto tmp6 = at::vec::Vectorized<float>(tmp5);
                    auto tmp7 = tmp4 * tmp6;
                    auto tmp8 = (tmp7);
                    auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0));
                    auto tmp10 = tmp9 * tmp3;
                    auto tmp11 = tmp10.round();
                    auto tmp12 = tmp11 + tmp3;
                    auto tmp13 = static_cast<float>(-128.0);
                    auto tmp14 = at::vec::Vectorized<float>(tmp13);
                    auto tmp15 = at::vec::maximum(tmp12, tmp14);
                    auto tmp16 = static_cast<float>(127.0);
                    auto tmp17 = at::vec::Vectorized<float>(tmp16);
                    auto tmp18 = at::vec::minimum(tmp15, tmp17);
                    auto tmp19 = at::vec::convert<at::Float8_e4m3fn>(tmp18);
                    tmp19.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                }
                if(C10_UNLIKELY(x0 >= static_cast<int64_t>(432L) && x0 < static_cast<int64_t>(441L)))
                {
                    auto tmp0 = at::vec::Vectorized<at::Float8_e4m3fn>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(9L));
                    auto tmp1 = at::vec::convert<float>(tmp0);
                    auto tmp2 = static_cast<float>(100.0);
                    auto tmp3 = at::vec::Vectorized<float>(tmp2);
                    auto tmp4 = tmp1 - tmp3;
                    auto tmp5 = static_cast<float>(0.01);
                    auto tmp6 = at::vec::Vectorized<float>(tmp5);
                    auto tmp7 = tmp4 * tmp6;
                    auto tmp8 = (tmp7);
                    auto tmp9 = at::vec::clamp_min(tmp8, decltype(tmp8)(0));
                    auto tmp10 = tmp9 * tmp3;
                    auto tmp11 = tmp10.round();
                    auto tmp12 = tmp11 + tmp3;
                    auto tmp13 = static_cast<float>(-128.0);
                    auto tmp14 = at::vec::Vectorized<float>(tmp13);
                    auto tmp15 = at::vec::maximum(tmp12, tmp14);
                    auto tmp16 = static_cast<float>(127.0);
                    auto tmp17 = at::vec::Vectorized<float>(tmp16);
                    auto tmp18 = at::vec::minimum(tmp15, tmp17);
                    auto tmp19 = at::vec::convert<at::Float8_e4m3fn>(tmp18);
                    tmp19.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(9L));
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (1, 7, 7, 9), (441, 63, 9, 1))
        buf0 = empty_strided_cpu((1, 7, 7, 9), (441, 63, 9, 1), torch.float8_e4m3fn)
        # [Provenance debug handles] cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0:1
        cpp_fused_dequantize_per_tensor_quantize_per_tensor_relu_0(arg0_1, buf0)
        del arg0_1
        return (buf0, )
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163324
Approved by: https://github.com/Xia-Weiwen, https://github.com/mingfeima, https://github.com/jansel
ghstack dependencies: #163316
2025-10-20 01:56:00 +00:00
e9d8973427 [Inductor] support masked vectorization for the tail_loop for float64 datatype (#163316)
**Summary:**
Support masked vectorization for the tail_loop for float64 datatype.

**Example:**
```
import torch

def fn(x):
    return x * x

x = torch.randn((22, 22), dtype=torch.double)
with torch.no_grad():
    compiled_fn = torch.compile(fn)
    compiled_fn(x)
```

**Generated code:**

- Before
```
cpp_fused_mul_0 = async_compile.cpp_pybinding(['const double*', 'double*'], r'''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(const double* in_ptr0,
                       double* out_ptr0)
{
    {
        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(484L); x0+=static_cast<int64_t>(16L))
        {
            {
                if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(480L)))
                {
                    auto tmp0 = at::vec::VectorizedN<double,2>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                    auto tmp1 = tmp0 * tmp0;
                    tmp1.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                }
                if(C10_UNLIKELY(x0 >= static_cast<int64_t>(480L) && x0 < static_cast<int64_t>(484L)))
                {
                    for (int64_t x0_tail = static_cast<int64_t>(480L);x0_tail < static_cast<int64_t>(484L); x0_tail++)
                    {
                        auto tmp0 = in_ptr0[static_cast<int64_t>(x0_tail)];
                        auto tmp1 = double(tmp0 * tmp0);
                        out_ptr0[static_cast<int64_t>(x0_tail)] = tmp1;
                    }
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (22, 22), (22, 1))
        buf0 = empty_strided_cpu((22, 22), (22, 1), torch.float64)
        # [Provenance debug handles] cpp_fused_mul_0:1
        cpp_fused_mul_0(arg0_1, buf0)
        del arg0_1
        return (buf0, )
```
- After
```
cpp_fused_mul_0 = async_compile.cpp_pybinding(['const double*', 'double*'], r'''
#include <torch/csrc/inductor/cpp_prefix.h>
extern "C"  void  kernel(const double* in_ptr0,
                       double* out_ptr0)
{
    {
        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(484L); x0+=static_cast<int64_t>(16L))
        {
            {
                if(C10_LIKELY(x0 >= static_cast<int64_t>(0) && x0 < static_cast<int64_t>(480L)))
                {
                    auto tmp0 = at::vec::VectorizedN<double,2>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                    auto tmp1 = tmp0 * tmp0;
                    tmp1.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(16));
                }
                if(C10_UNLIKELY(x0 >= static_cast<int64_t>(480L) && x0 < static_cast<int64_t>(484L)))
                {
                    auto tmp0 = at::vec::VectorizedN<double,2>::loadu(in_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(4L));
                    auto tmp1 = tmp0 * tmp0;
                    tmp1.store(out_ptr0 + static_cast<int64_t>(x0), static_cast<int64_t>(4L));
                }
            }
        }
    }
}
''')

async_compile.wait(globals())
del async_compile

class Runner:
    def __init__(self, partitions):
        self.partitions = partitions

    def recursively_apply_fns(self, fns):
        new_callables = []
        for fn, c in zip(fns, self.partitions):
            new_callables.append(fn(c))
        self.partitions = new_callables

    def call(self, args):
        arg0_1, = args
        args.clear()
        assert_size_stride(arg0_1, (22, 22), (22, 1))
        buf0 = empty_strided_cpu((22, 22), (22, 1), torch.float64)
        # [Provenance debug handles] cpp_fused_mul_0:1
        cpp_fused_mul_0(arg0_1, buf0)
        del arg0_1
        return (buf0, )
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163316
Approved by: https://github.com/mingfeima, https://github.com/jansel
2025-10-20 01:41:38 +00:00
6b80c94901 [FlexAttention] Fix dynamic shaped heads flex_flash check (#165866)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165866
Approved by: https://github.com/BoyuanFeng
ghstack dependencies: #165729
2025-10-19 23:10:16 +00:00
8139f33fa5 [dynamo] Add recompile reason for set_stance fail_on_recompile (#165445)
Fixes #163500

### Summary:
For `set_stance("fail_on_recompile")` failures will provide the reason why the recompilation occurred

### Impacts:
module: dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165445
Approved by: https://github.com/williamwen42
2025-10-19 21:12:19 +00:00
a88587348b [dynamo] Clean up assert in dynamo [1/N] (#165430)
Fixes some part of #162852 and #164878. These two issues have some relationship though.

* __->__ #165430

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165430
Approved by: https://github.com/Lucaskabela, https://github.com/williamwen42

Co-authored-by: Lucas Kabela <lucasakabela@gmail.com>
2025-10-19 21:00:05 +00:00
633a3b7f67 Revert "shrink_group implementation to expose ncclCommShrink API (#164518)"
This reverts commit fa0db212e717b6cb225159cb32ea3d83baa52381.

Reverted https://github.com/pytorch/pytorch/pull/164518 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/164518#issuecomment-3419893217))
2025-10-19 19:20:45 +00:00
fa0db212e7 shrink_group implementation to expose ncclCommShrink API (#164518)
Closes #164529

To expose the new [ncclCommShrink](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/api/comms.html#ncclcommshrink) API to PyTorch.

This is useful when you need to exclude certain GPUs or nodes from a collective operation, for example in fault tolerance scenarios or when dynamically adjusting resource utilization.

For more info:  [Shrinking a communicator](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#shrinking-a-communicator)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164518
Approved by: https://github.com/kwen2501
2025-10-19 18:00:08 +00:00
22ae059d32 AOTI util deprecated flow using the new tracer (#165582)
Reapply of https://github.com/pytorch/pytorch/pull/163260

AOTI utils expect free function sometimes so adjust export API to handle that, haven't seen any methods getting exported. Some AOTI flows also require we populate dynamo_flat_name_to_original_fqn so i just copy how it is done in eval_frame.py. I also cleaned up how we get rid of export_root and fixed some overcomplicated nn_module_stack handling in export code. The logic is simpler now thanks to @anijain2305 .

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165582
Approved by: https://github.com/anijain2305
2025-10-19 15:52:16 +00:00
b2f5c25b27 Introduce a generic API torch._C._accelerator_setAllocatorSettings (#165291)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165291
Approved by: https://github.com/albanD
ghstack dependencies: #165288, #165289
2025-10-19 15:34:36 +00:00
57ba575242 [BE][Ez]: Update torch.is_tensor documentation (#165841)
TypeIs propogates the isinstance check with the typing system. They are now equivalent.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165841
Approved by: https://github.com/albanD
2025-10-19 09:24:11 +00:00
3255e7872b Enable all flake8-logging-format rules (#164655)
These rules are enabled by removing existing suppressions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164655
Approved by: https://github.com/janeyx99, https://github.com/mlazos
2025-10-19 00:59:28 +00:00
c4f6619330 Enable more DTensor tests in local tensor mode and fix more integration issues (#165716)
- During op dispatch local tensor is supposed to collect rng state from CPU and CUDA
devices so that it can be reset before execution of the op for each such that ops
with randomness produces the same result for all ranks (note that we are planning a
separate change to add support of per rank rng state). Previously we relied on
op input arguments to deduce which devices to get rng state from. Which doesn't work
for factory functions such torch.randn. Hence this changes switches to uncondionally
collecting rng state from all devices.

- Fixing per rank specific computations in _MaskedPartial and Shard placements discovered
during test enablement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165716
Approved by: https://github.com/ezyang
2025-10-18 23:33:24 +00:00
f18041cca8 Fix missing closing quote in __init__.py documentation (#165827)
Title says it all.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165827
Approved by: https://github.com/Skylion007
2025-10-18 22:09:18 +00:00
1f43d17ce6 Fix self assignment (#165816)
This PR removes assignments of the form `var=var`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165816
Approved by: https://github.com/jansel
2025-10-18 18:51:52 +00:00
032bed95cd Various C++ code fixes in LSAN integration (#165818)
This PR extracts the C++ code fixes from #154584, which are fixes in enabling LSAN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165818
Approved by: https://github.com/ezyang
2025-10-18 17:59:23 +00:00
f510d0dbc0 Clarrifying input output angle unit in the docs for trigonometric fun… (#161248)
…ctions

Fixes #[160995](https://github.com/pytorch/pytorch/issues/160995)

Modified the docs to clarify that input tensor  values for torch.sin, torch.cos and torch.tan should be in radians and the output tensor  values for torch.acos, torch.asin and torch.atan is in radians.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161248
Approved by: https://github.com/isuruf

Co-authored-by: Isuru Fernando <isuruf@gmail.com>
2025-10-18 11:53:48 +00:00
beb6b62e8c Revert "Enable more DTensor tests in local tensor mode and fix more integration issues (#165716)"
This reverts commit 1b397420f22b22f90a1093233ecd9167656e50cb.

Reverted https://github.com/pytorch/pytorch/pull/165716 on behalf of https://github.com/pytorch-auto-revert due to Reverted automatically by pytorch's autorevert, to avoid this behaviour add the tag autorevert: disable ([comment](https://github.com/pytorch/pytorch/pull/165716#issuecomment-3418083391))
2025-10-18 09:15:49 +00:00
4740ce7787 [CP] Fix load balancer incorrectly assuming batch dimension exists (#165792)
https://github.com/pytorch/pytorch/pull/163617 removes the if/else statement to check if the input buffers have the batch dimension.

This PR fixes the issue and also adds a test.

In the future, we should explicitly ask users to unsqueeze the batch dimension. This is a BC of the existing contract but implicitly infers the batch dimension existence is not safe.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165792
Approved by: https://github.com/XilunWu
2025-10-18 09:11:16 +00:00
fdab48a7c1 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 07:36:18 +00:00
a0948d4d23 [ROCm][inductor] autotune support for persistent reduction kernels (#163908)
After the removal of want_no_x_dim for persistent reduction kernels, we can improve the autotuning setup for persistent reduction kernels.

Currently even with tuning enable, filtering will only try a single config in many cases. Avoid filtering with autotune mode, and override MAX_BLOCK limit. Also we always include tiny_config when autotuning is enabled.

Contributions from several members of the AMD Inductor and Triton teams: @jataylo @iupaikov-amd @AmdSampsa @xiaohuguo2023

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163908
Approved by: https://github.com/jansel, https://github.com/PaulZhang12
2025-10-18 07:33:24 +00:00
0bbdd6b8db [ROCm][inductor] heuristic improvements for pointwise kernels (#163197)
Heuristic improvements for pointwise kernels for MI350.

Contributions from several members of the AMD Inductor and Triton teams:
@jataylo @AmdSampsa @iupaikov-amd @@xiaohuguo2023

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163197
Approved by: https://github.com/PaulZhang12, https://github.com/eellison, https://github.com/jansel

Co-authored-by: AmdSampsa <sampsa.riikonen@amd.com>
Co-authored-by: Jack Taylor <108682042+jataylo@users.noreply.github.com>
2025-10-18 07:23:41 +00:00
24520b8386 Revert "Enable all PIE rules on ruff (#165814)"
This reverts commit c79dfdc6550e872783aa5cb5fc9e86589bf18872.

Reverted https://github.com/pytorch/pytorch/pull/165814 on behalf of https://github.com/cyyever due to Need to cover more files ([comment](https://github.com/pytorch/pytorch/pull/165814#issuecomment-3417931863))
2025-10-18 07:21:08 +00:00
c79dfdc655 Enable all PIE rules on ruff (#165814)
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796  Enum contains duplicate value: {value}
PIE808  Unnecessary start argument in range
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
2025-10-18 06:40:12 +00:00
e595136187 Enable PLC1802 on ruff (#165813)
This PR enables ruff check `PLC1802`, which detects len calls on sequences in a boolean test context.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165813
Approved by: https://github.com/ezyang
2025-10-18 05:44:14 +00:00
aaac8cb0f5 [1/N] Add strict parameter to Python zip calls (#165531)
Add `strict=True/False` to zip calls in test utils. `strict=True` is passed when possible.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165531
Approved by: https://github.com/Skylion007
2025-10-18 05:26:33 +00:00
0f0b4bf029 [1/N] Remove unused header inclusion (#165763)
This PR removes unused header inclusion in C++ files.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165763
Approved by: https://github.com/Skylion007
2025-10-18 05:23:11 +00:00
b8194268a6 Remove unnecessary noqa suppressions (#164106)
This PR removes unused `noqa` suppressions in Python code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164106
Approved by: https://github.com/albanD
2025-10-18 04:52:41 +00:00
f02e3947f6 Expand type checking to mypy strict files (#165697)
Expands Pyrefly type checking to check the files outlined in the mypy-strict.ini configuration file:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165697
Approved by: https://github.com/ezyang
2025-10-18 04:34:45 +00:00
d9f94e0d7d [dynamo] Support fx.traceback.annotate as decorator (#165805)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165805
Approved by: https://github.com/Lucaskabela, https://github.com/SherlockNoMad, https://github.com/yushangdi
2025-10-18 03:58:11 +00:00
23417ae50f [Submodule] Bump FBGEMM to latest (#165544)
Summary:

* FBGEMM submodule updated to main
* CMake updated to reflect necessary changes
* Notably pulls in NVFP4 grouped gemm kernels

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Signed-off-by: Simon Layton <simonlayton@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165544
Approved by: https://github.com/cyyever, https://github.com/jeffdaily
2025-10-18 03:58:08 +00:00
e4d6c56ffb Improve dynamo graph capture stack trace for custom ops (#165693)
For a custom op
```
@torch.library.custom_op("my_lib::foo", mutates_args={})
def foo(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
    return x + y
```
ppl could call `torch.ops.my_lib.foo()` or directly call `foo()` in the `forward` of an `nn.Module`

These two calling conventions will lead to the same node in the output graph, but different stack traces.

When directly calling `foo()`, the displayed stack_trace in the graph will be
```
# File: .../pytorch/torch/_library/custom_ops.py:687 in __call__, code: return self._opoverload(*args, **kwargs)
```
This is not useful so we filter it out.

```
python test/functorch/test_aot_joint_with_descriptors.py -k test_custom_op_stack_trace
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165693
Approved by: https://github.com/SherlockNoMad, https://github.com/williamwen42
2025-10-18 03:48:18 +00:00
017d2985f3 set unbacked bindings in reinplace pass for newly created nodes during generalize_scatter decomp (#164948)
Two fixes:
1. in rein_place pass, set unbacked bindings for newly created nodes.
2. In inductor, ComputeBuffer used to miss detecting some used symbols, fixed that.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164948
Approved by: https://github.com/bobrenjc93
ghstack dependencies: #164341
2025-10-18 03:20:30 +00:00
c6a8db0b9a Fix issues with generalized_scatter and setitem allocated unbacked symbols. (#164341)
Three fixes:
1. When doing t[u0] +=1  if u0 is unbacked we could allocate a new unbacked symbol during the the indexing of t[u0] (when we fake trace setitem), namely because meta_select does allocate a new unbacked symbol for the storage offset when we do not know if u0>=0 or u0<0.  but the output size/stride of setitem(), does not depend on that new symbol. it's self consumed in setitem so we shall ignore it.

2. Also when we trace through generalized_scatter the applications of the views could allocate unbacked symints
but those do not effect final output, we also shall ignore them.

3.Before accessing strides in lowering we shall materialize.

Address  https://github.com/pytorch/pytorch/issues/114293 and https://github.com/pytorch/pytorch/issues/131911

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164341
Approved by: https://github.com/bobrenjc93
2025-10-18 03:20:30 +00:00
cf3a787bbc [annotate] Annotate bw nodes before eliminate dead code (#165782)
Fixes https://github.com/pytorch/torchtitan/pull/1907

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165782
Approved by: https://github.com/SherlockNoMad
2025-10-18 01:54:31 +00:00
de3da77cf7 Thread deterministic config vars to subproc compilation (#165729)
# Summary

TIL (AFTER WAYYYY TOO MUCH INSANITY), that we do not serialize the full set of configs for the subproc compilation.

I found this while working on Flex-attention determinism: https://github.com/meta-pytorch/attention-gym/pull/168

might be good to audit if we need to thread through any more

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165729
Approved by: https://github.com/shunting314, https://github.com/eellison
2025-10-18 01:25:50 +00:00
543ddbf44c [ONNX] Support renaming in dynamic axes to shapes conversion (#165769)
Discovered in ##165748

This PR also deprecates the conversion. ONNX exporter team does not intend to maintain the conversion in long term.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165769
Approved by: https://github.com/justinchuby
2025-10-18 01:11:20 +00:00
e9f4999985 [Code Clean] Replace std::runtime_error with TORCH_CHECK (#165305)
Fixes part of #148114

Including:

- torch/csrc/distributed

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165305
Approved by: https://github.com/FFFrog, https://github.com/albanD
2025-10-18 01:08:44 +00:00
a25a649e70 [Mem Snapshot] Add Metadata Field (#165490)
Summary:
The implementation adds the ability to:

Set custom metadata strings that will be attached to all subsequent allocations
Clear or change the metadata at any point
View the metadata in memory snapshots via _dump_snapshot()

Test Plan: Added test in test_cuda.py and check manually in snapshot to see that metadata was added.

Differential Revision: D84654933

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165490
Approved by: https://github.com/yushangdi
2025-10-17 23:46:02 +00:00
69c33898fa Revert "[Inductor][CuTeDSL] Move load_template up two directories (#165347) (#165576)"
This reverts commit febb60323018948b2b9d2cff35b3cc4e0d0c55c8.

Reverted https://github.com/pytorch/pytorch/pull/165576 on behalf of https://github.com/seemethere due to This was actually reverted internally, current PR is linked to a stale diff so diff train tools think that this is landed via co-dev when it was actually reverted ([comment](https://github.com/pytorch/pytorch/pull/165576#issuecomment-3417510146))
2025-10-17 23:33:17 +00:00
1b397420f2 Enable more DTensor tests in local tensor mode and fix more integration issues (#165716)
- During op dispatch local tensor is supposed to collect rng state from CPU and CUDA
devices so that it can be reset before execution of the op for each such that ops
with randomness produces the same result for all ranks (note that we are planning a
separate change to add support of per rank rng state). Previously we relied on
op input arguments to deduce which devices to get rng state from. Which doesn't work
for factory functions such torch.randn. Hence this changes switches to uncondionally
collecting rng state from all devices.

- Fixing per rank specific computations in _MaskedPartial and Shard placements discovered
during test enablement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165716
Approved by: https://github.com/ezyang
2025-10-17 23:28:22 +00:00
e50dc40d28 Revert "Update gm.print_readable to include Annotation (#165397)"
This reverts commit 7a657700131f31577544e93587eb339618677e97.

Reverted https://github.com/pytorch/pytorch/pull/165397 on behalf of https://github.com/malfet due to I don't know how/why, but it breaks windows tests, see 2e22b1a61e/1 ([comment](https://github.com/pytorch/pytorch/pull/165397#issuecomment-3417428128))
2025-10-17 22:35:50 +00:00
2e22b1a61e [pytorch] Composite backend potential fix for is_backend_available (#165061)
Summary: `is_backend_available` takes in a string and expects it to only be backend, if its given a composite (device:backend) string, it fails.

Reviewed By: prashrock

Differential Revision: D81886736

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165061
Approved by: https://github.com/H-Huang
2025-10-17 22:06:36 +00:00
616c6bdf8f [dynamo][ac] Config flag to allow eager and compile AC divergence for side-effects (#165775)
Eager AC/SAC reapplies the mutations (like global dict mutations) in the backward during the recomputation of forward. torch.compile has no easy way to reapply python mutations in the backward. But many users might be ok to skip reapplication of side effects in the backward. They can set this config flag to accept this eager and compile divergence.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165775
Approved by: https://github.com/zou3519
ghstack dependencies: #165734
2025-10-17 22:04:19 +00:00
c18ddfc572 [dynamo][easy] Support torch.accelerator.current_accelerator (#165734)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165734
Approved by: https://github.com/Skylion007
2025-10-17 22:04:19 +00:00
86ebce1766 [precompile] Pass tensor_to_context to backend. (#165702)
Summary:

Fixing a VLLM issue https://github.com/vllm-project/vllm/issues/27040 where
aot precompile fails on some models using symbolic shapes in inductor.

Test Plan:
pp HF_HUB_DISABLE_XET=1 VLLM_ENABLE_V1_MULTIPROCESSING=0 VLLM_USE_AOT_COMPILE=1 vllm bench latency --model microsoft/DialoGPT-small --input-len 128 --output-len 256 --num-iters 50 --dtype float16

Reviewers:

Subscribers:

Tasks:

Tags:

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165702
Approved by: https://github.com/tugsbayasgalan
2025-10-17 21:52:04 +00:00
8cb2fb44f2 [Inductor] Support fallback for all gemm like ops (#165755)
Summary: Fill op_override field for bmm aten ops so they can be converted properly in the wrapper_fxir backend

Reviewed By: StellarrZ

Differential Revision: D84840948

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165755
Approved by: https://github.com/blaine-rister
2025-10-17 21:08:29 +00:00
ab65498d71 Fix _StridedShard incorrect split (#165533)
https://github.com/pytorch/pytorch/pull/164820 introduced a bug that `_StridedShard` will call parent class `Shard`'s `split_tensor` method, thus results in incorrect data locality. (I think @ezyang spotted this issue, but we have no test to capture this)

Meanwhile, I notice another bug that when we normalize a `_StridedShard`'s placement, it will also trigger parent class `Shard`'s `split_tensor` method because it will create a Shard class [here](0c14f55de6/torch/distributed/tensor/_api.py (L783)). I think we never test `distribute_tensor` for `_StridedShard` before. So I added a test here to compare against ordered shard.

Using classmethod because the _split_tensor logic is different between `Shard` and `_StridedShard`. Basically I want to shard on local tensors without initializing the Shard object:
```
local_tensor = _StridedShard._make_shard_tensor(dim, tensor, mesh, mesh_dim, split_factor=split_factor)
local_tensor = Shard._make_shard_tensor(dim, tensor, mesh, mesh_dim)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165533
Approved by: https://github.com/XilunWu
2025-10-17 20:54:46 +00:00
2bcd892c86 [distributed] Replace assert statements in distributed checkpoint with explicit checks (#165256)
Fixes partially #164878

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165256
Approved by: https://github.com/albanD
2025-10-17 20:14:35 +00:00
75e2a9fae3 [annotate] add annotate_fn function decorator (#165703)
Example usage:

```
        @fx_traceback.annotate_fn({"pp_stage": 1})
        def example_function(x):
            return x * x

        class SimpleLinear(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.Linear(3, 2)

            def forward(self, x):
                with fx_traceback.annotate({"pp_stage": 0}):
                    y = self.linear(x)
                y = example_function(y)
                return y - 1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165703
Approved by: https://github.com/SherlockNoMad
2025-10-17 20:10:53 +00:00