Commit Graph

229 Commits

Author SHA1 Message Date
30fb2c4aba [lint] autoformat test/cpp and torch/csrc
Let's have some fun.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/78828

Approved by: https://github.com/ezyang
2022-06-11 21:11:16 +00:00
fa09099ba3 Codegen: TraceType only includes operators being registered (#68691)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68691

TraceType is a sharded file, so by only including specific operator
headers, we ensure that changing one (non-method) operator only needs
one shard to be re-compiled.

This also changes all the included autograd and jit headers from
including `ATen/ATen.h` to just including `ATen/core/Tensor.h`.

Test Plan: Imported from OSS

Reviewed By: gchanan

Differential Revision: D33336948

Pulled By: albanD

fbshipit-source-id: 4e40371592b9a5a7e7fcd1d8cecae11ffb873113
2022-01-02 13:09:19 -08:00
26e32988bd Revert D32596264: Codegen: TraceType only includes operators being registered
Test Plan: revert-hammer

Differential Revision:
D32596264 (e66a8ab4f5)

Original commit changeset: 2f28b62d7b99

Original Phabricator Diff: D32596264 (e66a8ab4f5)

fbshipit-source-id: 7d18c4e77ce30dd7817a95f9c39b565cb246cd12
2021-12-17 11:20:12 -08:00
e66a8ab4f5 Codegen: TraceType only includes operators being registered (#68691)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68691

TraceType is a sharded file, so by only including specific operator
headers, we ensure that changing one (non-method) operator only needs
one shard to be re-compiled.

This also changes all the included autograd and jit headers from
including `ATen/ATen.h` to just including `ATen/core/Tensor.h`.

Test Plan: Imported from OSS

Reviewed By: jbschlosser, malfet

Differential Revision: D32596264

Pulled By: albanD

fbshipit-source-id: 2f28b62d7b9932f30fad7daacd8ac5bb7f63c621
2021-12-17 10:35:05 -08:00
b2e79ed5ec Remove WindowsTorchApiMacro.h in favor of Export.h (#69585)
Summary:
Follow up to https://github.com/pytorch/pytorch/issues/68095

This also changes the files from the ATen folder to include c10's `Export.h` instead since they can't ever be exporting `TORCH_PYTHON_API`.

cc pietern mrshenli pritamdamania87 zhaojuanmao satgera rohan-varma gqchen aazzolini osalpekar jiayisuse SciPioneer H-Huang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69585

Reviewed By: mrshenli

Differential Revision: D32958594

Pulled By: albanD

fbshipit-source-id: 1ec7ef63764573fa2b486928955e3a1172150061
2021-12-09 17:30:09 -08:00
d701357d92 Factor out TensorBase that doesn't depend on native operators (#63612)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63612

This makes Tensor inherit from a new class TensorBase, that provides a subset of Tensor that doesn't
directly depend on native_functions.yaml. Code that only includes TensorBase.h with thus not need to
be rebuilt every time someone changes an operator signature.

Making `Tensor` inherit from this class means that `const TensorBase&` parameters will be callable
with an ordinary `Tensor`. I've also made `Tensor` constructible and assignable from `TensorBase` to
minimize friction in code mixing the two types.

To help enforce that `Tensor.h` and `Functions.h` aren't accidentally included, I've added an error
into `Operators.h` if `TORCH_ASSERT_NO_OPERATORS` is defined. We can either set this in the build
system for certain folders, or just define it at the top of any file.

I've also included an example of manually special-casing the commonly used `contiguous` operator.
The inline function's slow path defers to `TensorBase::__dispatch_contiguous` which is defined in
`Tensor.cpp`. I've made it so `OptionalTensorRef` is constructible from `TensorBase`, so I can
materialize a `Tensor` for use in dispatch without actually increasing its refcount.

Test Plan: Imported from OSS

Reviewed By: gchanan

Differential Revision: D30728580

Pulled By: ezyang

fbshipit-source-id: 2cbc8eee08043382ee6904ea8e743b1286921c03
2021-09-08 13:28:54 -07:00
6ecc1a4c4f Make pytorch clang-tidy clean (#60649)
Summary:
This PR suppresses clang-tidy warnings in the codebase (for now) so that we can re-enable clang-tidy checks on master.

I ran this script to add the `NOLINTNEXTLINE` comments (on a devserver):
```bash
python3 setup.py develop

# Uses same script that's run on CI and adds the -j (parallel), -s (add comments), -k (continue if diagnostic errors are found) options
python3 tools/clang_tidy.py \
  -j \
  -s \
  -k \
  -v \
  --paths torch/csrc/ \
  -g"-torch/csrc/jit/passes/onnx/helper.cpp" \
  -g"-torch/csrc/jit/passes/onnx/shape_type_inference.cpp" \
  -g"-torch/csrc/jit/serialization/onnx.cpp" \
  -g"-torch/csrc/jit/serialization/export.cpp" \
  -g"-torch/csrc/jit/serialization/import.cpp" \
  -g"-torch/csrc/jit/serialization/import_legacy.cpp" \
  -g"-torch/csrc/onnx/init.cpp" \
  -g"-torch/csrc/cuda/nccl.*" \
  -g"-torch/csrc/cuda/python_nccl.cpp" \
  -g"-torch/csrc/autograd/FunctionsManual.cpp" \
  -g"-torch/csrc/generic/*.cpp" \
  -g"-torch/csrc/jit/codegen/cuda/runtime/*" \
  -g"-torch/csrc/deploy/interpreter/interpreter.cpp" \
  -g"-torch/csrc/deploy/interpreter/interpreter.h" \
  -g"-torch/csrc/deploy/interpreter/interpreter_impl.h" \
  -g"-torch/csrc/deploy/interpreter/test_main.cpp"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60649

Test Plan: Verified changes by re-running the script (without the `-s` option) and seeing no warnings/errors.

Reviewed By: walterddr, janeyx99

Differential Revision: D29504258

Pulled By: 1ntEgr8

fbshipit-source-id: 78310b30ee8213b73ddb4771ad874665323e7a4e
2021-07-01 12:21:07 -07:00
06c1094ea0 Merge CreationMeta MULTI_OUTPUT_SAFE with MULTI_OUTPUT_NODE (#58285)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/57679

##### Release Notes
This is part of the end of the deprecation of inplace/view:
- `detach_` will now raise an error when invoked on any view created by `split`, `split_with_sizes`, or `chunk`. You should use the non-inplace `detach` instead.
- The error message for when an in-place operation (that is not detach) is performed on a view created by `split`, `split_with_size`, and `chunk` has been changed from  "This view is **an** output of a function..." to "This view is **the** output of a function...".

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58285

Reviewed By: bdhirsh

Differential Revision: D28441980

Pulled By: soulitzer

fbshipit-source-id: e2301d7b8cbc3dcdd328c46f24bcb9eb7f3c0d87
2021-05-17 13:48:39 -07:00
727c1d69d7 Remove unnecessary indirection through torch::autograd::impl::pyobj/set_pyobj (#57733)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57733

I'm going to be modifying the APIs here, so the less API surface
covering these functions the better.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D28289082

Pulled By: ezyang

fbshipit-source-id: 4b71270bb82e0d6baa4dfed2f2e4ee8831f590b5
2021-05-10 08:18:33 -07:00
83f186717b Improve perf for forward AD view handling (#57057)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57057

This PR performs optimization on the ViewInfo handling to remove the need for the "no forward AD mode".
- When the forward and backward ViewInfo are the same, create and store only one of them

Code for timing:
```python
timer = Timer(
    stmt='a.view(-1)',
    setup='''\
import torch
a = torch.rand(4)''')

res = timer.collect_callgrind(repeats=2, number=10)[1]
```

Difference between master and this PR:
```
# Benchmark at master
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7fe33be83690>
a.view(-1)
setup:
  import torch
  a = torch.rand(4)

                           All          Noisy symbols removed
    Instructions:        69286                      68442
    Baseline:             1332                       1188
10 runs per measurement, 1 thread

# Benchmark at this branch
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7fe33bd7ec30>
a.view(-1)
setup:
  import torch
  a = torch.rand(4)

                           All          Noisy symbols removed
    Instructions:        69437                      68562
    Baseline:             1363                       1188
10 runs per measurement, 1 thread

# Difference between the two
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0x7fe1216e9a00>
    160  ???:0x000000000a11c8d0
     60  torch::autograd::DifferentiableViewMeta::DifferentiableViewMeta
     60  ???:torch::autograd::as_view(at::Tensor const&, at::Tensor const&, bool, bool, std::function<at::Tensor (at::Tensor const&)>, torch::autograd::CreationMeta, bool)
     40  ???:0x0000000008e14f50
     40  ???:0x0000000008e05bd0
     40  ???:0x0000000008e05480
     40  ???:0x0000000008e036d0
     40  ???:0x0000000008e02720
     30  make_variable_differentiable_view
    ...
    -20  ???:0x0000000008e02060
    -20  ???:0x0000000008e01fd0
    -30  ???:torch::autograd::isForwardADEnabled()
    -40  ???:0x0000000008e14f90
    -40  ???:0x0000000008e05c00
    -40  ???:0x0000000008e054a0
    -40  ???:0x0000000008e036f0
    -40  ???:0x0000000008e02740
   -160  ???:0x000000000a11d8d0

Total: 120

```

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D28071505

Pulled By: albanD

fbshipit-source-id: 672b1bdf87d516b6de4f2e36656819cfd6f4c9b9
2021-04-30 07:32:54 -07:00
c91bd25e90 Fix use of allow_tensor_metadata in view variable creation (#57069)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57069

Test Plan: Imported from OSS

Reviewed By: zou3519

Differential Revision: D28071507

Pulled By: albanD

fbshipit-source-id: 44f0e09846fdc569cf1a62a6f80ca88911e7e45c
2021-04-30 07:31:54 -07:00
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
43d4f3b8d0 Implement public API InferenceMode and its error handling (#55008)
Summary:
https://www.internalfb.com/phabricator/paste/view/P360377337Pull Request resolved: https://github.com/pytorch/pytorch/pull/53343

For easier review, here's a diff between the version before revert. https://www.internalfb.com/phabricator/paste/view/P360750919

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55008

Test Plan: Imported from OSS

Pulled By: ailzhang

Reviewed By: bhosmer

Differential Revision: D27443229

fbshipit-source-id: 01b03446a1f6373f43dd5c7170d26226b50f363c
2021-03-31 10:48:00 -07:00
263180d7fc Revert D26973911: Implement public API InferenceMode and its error handling
Test Plan: revert-hammer

Differential Revision:
D26973911 (7caa464631)

Original commit changeset: 0ebdac7a3cd5

fbshipit-source-id: afd37a3785bc694e8ffbd679eba1cfed89ef2273
2021-03-29 11:17:49 -07:00
7caa464631 Implement public API InferenceMode and its error handling (#53343)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/53343

Test Plan: Imported from OSS

Reviewed By: ezyang, nikithamalgifb

Differential Revision: D26973911

Pulled By: ailzhang

fbshipit-source-id: 0ebdac7a3cd554822d26d5a40f539b6e2aaec61d
2021-03-27 13:44:23 -07:00
cc92117aad cleanup static_cast of AutogradMeta (#54103)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54103

The goal is to reduce the spread of static casts in the autograd code as per the comment in https://github.com/pytorch/pytorch/pull/49097#discussion_r543695091
I wasn't sure how to use a virtual method here but a simple method in impl clean it up quite nicely.

Test Plan: Imported from OSS

Reviewed By: agolynski

Differential Revision: D27117840

Pulled By: albanD

fbshipit-source-id: 5f277dde34ccf6bc20f76583b906ff3528cde5aa
2021-03-18 09:29:07 -07:00
004db37358 properly make AutogradMeta/DifferentiableViewMeta attributes internal (#54102)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/54102

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D27117841

Pulled By: albanD

fbshipit-source-id: bb047cf1878ccff81d677ceb02e98e784760c3ec
2021-03-18 09:29:03 -07:00
1c8d11c9e2 [PyTorch] Save a refcount bump in make_variable (#51180)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51180

This fast path still did a refcount bump because it copied the inner intrusive_ptr to the stack. Now it's moved.
ghstack-source-id: 120460258

Test Plan:
1) profile empty benchmark & inspect assembly to verify move
2) run framework overhead benchmarks

Reviewed By: bhosmer

Differential Revision: D26094951

fbshipit-source-id: b2e09f9ad885cb633402885ca1e61a370723f6b8
2021-01-27 14:09:30 -08:00
0b5303e833 Propagate CreationMeta when chaining views (#51061)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/49824

## Background

When creating a view of a view, there was a possibility that the new view would be less restrictive than the previous view, incorrectly sidestepping the error that should be thrown when using in-place operations on the new view.

The fix addresses this by propagating `CreationMeta` from the previous view to the new view. Currently, the old view's `creation_meta` is only propagated when the new view's `creation_meta == CreationMeta::DEFAULT`. This ensures that the new view is not less restrictive than the previous view wrt. allowing in-place operations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/51061

Test Plan:
```
python test/test_autograd.py TestAutogradDeviceTypeCPU.test_inplace_view_of_multiple_output_view_cpu
python test/test_autograd.py TestAutogradDeviceTypeCUDA.test_inplace_view_of_multiple_output_view_cuda
python test/test_autograd.py TestAutogradDeviceTypeCPU.test_inplace_multiple_output_view_of_view_cpu
python test/test_autograd.py TestAutogradDeviceTypeCUDA.test_inplace_multiple_output_view_of_view_cuda
```

Reviewed By: heitorschueroff

Differential Revision: D26076434

Pulled By: jbschlosser

fbshipit-source-id: c47f0ddcef9b8449427b671aff9ad08edca70fcd
2021-01-27 09:00:51 -08:00
00d432a1ed Remove optional for veiw_fn during View Tracking (#50067)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50067

Fixes #49257

Using the `Callgrind` to test the performance.
```python
import torch
import timeit
from torch.utils.benchmark import Timer

timer = Timer("x.view({100, 5, 20});", setup="torch::Tensor x = torch::ones({10, 10, 100});", language="c++", timer=timeit.default_timer)
res = timer.collect_callgrind(number=10)
```
### Nightly
```python
torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7f7949138c40>
x.view({100, 5, 20});
setup: torch::Tensor x = torch::ones({10, 10, 100});
                           All          Noisy symbols removed
    Instructions:        42310                      42310
    Baseline:                0                          0
10 runs per measurement, 1 thread
Warning: PyTorch was not built with debug symbols.
         Source information may be limited. Rebuild with
         REL_WITH_DEB_INFO=1 for more detailed results.
```
### Current
```python
<torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.CallgrindStats object at 0x7f78f271a580>
x.view({100, 5, 20});
setup: torch::Tensor x = torch::ones({10, 10, 100});
                           All          Noisy symbols removed
    Instructions:        42480                      42480
    Baseline:                0                          0
10 runs per measurement, 1 thread
Warning: PyTorch was not built with debug symbols.
         Source information may be limited. Rebuild with
         REL_WITH_DEB_INFO=1 for more detailed results.
```
### Compare
There are 170 instructions reduced
```python
torch.utils.benchmark.utils.valgrind_wrapper.timer_interface.FunctionCounts object at 0x7f7941b7a7c0>
    970  ???:torch::autograd::as_view(at::Tensor const&, at::Tensor const&, bool, bool, std::function<at::Tensor (at::Tensor const&)>, torch::autograd::CreationMeta, bool)
    240  ???:torch::autograd::ViewInfo::~ViewInfo()
    180  ???:torch::autograd::ViewInfo::ViewInfo(at::Tensor, std::function<at::Tensor (at::Tensor const&)>)
    130  ???:torch::autograd::make_variable_differentiable_view(at::Tensor const&, c10::optional<torch::autograd::ViewInfo>, c10::optional<torch::autograd::ViewInfo>, torch::autograd::CreationMeta, bool)
    105  /tmp/benchmark_utils_jit_build_69e2f1710544485588feeca0719a3a57/timer_cpp_4435526292782672407/timer_src.cpp:main
    100  ???:std::function<at::Tensor (at::Tensor const&)>::function(std::function<at::Tensor (at::Tensor const&)> const&)
     70  ???:torch::autograd::DifferentiableViewMeta::~DifferentiableViewMeta()
     70  ???:torch::autograd::DifferentiableViewMeta::DifferentiableViewMeta(c10::TensorImpl*, c10::optional<torch::autograd::ViewInfo>, c10::optional<torch::autograd::ViewInfo>, torch::autograd::CreationMeta)
   -100  ???:c10::optional_base<torch::autograd::ViewInfo>::optional_base(c10::optional_base<torch::autograd::ViewInfo>&&)
   -105  /tmp/benchmark_utils_jit_build_2e75f38b553e42eba00523a86ad9aa05/timer_cpp_3360771523810516633/timer_src.cpp:main
   -120  ???:torch::autograd::ViewInfo::ViewInfo(at::Tensor, c10::optional<std::function<at::Tensor (at::Tensor const&)> >)
   -210  ???:c10::optional_base<std::function<at::Tensor (at::Tensor const&)> >::~optional_base()
   -240  ???:c10::optional_base<torch::autograd::ViewInfo>::~optional_base()
   -920  ???:torch::autograd::as_view(at::Tensor const&, at::Tensor const&, bool, bool, c10::optional<std::function<at::Tensor (at::Tensor const&)> >, torch::autograd::CreationMeta, bool)
```

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D25900495

Pulled By: ejguan

fbshipit-source-id: dedd30e69db6b48601a18ae98d6b28faeae30d90
2021-01-15 08:29:28 -08:00
c23808d8e8 Reland: Add base forward grad logic (#49734)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49734

RFC: https://github.com/pytorch/rfcs/pull/11

This PR add the basic logic to handle forward grad as dual Tensors.
It contains the following:
- Mechanism to save dual state on a Tensor and clear it up when the dual level ends
- C++ and python user facing API
- Updated view system that is able to track both forward and backward views

The current PR has the following limitations:
- Extensive tests are in the next PR in the stack as formulas are needed to write full tests.
- Only the manual formulas have been audited and no other formula is actually implemented here (they are in the next PR in the stack)
- Only level 0 is allowed for now. This was discussed and agreed that it is not needed for the first version of this PR.
- We can save one ViewInfo creation when both the forward and backward views have the same base. This can be done by adding a boolean flag to the DifferentiableViewMeta and extra logic in the `as_view` method. This is left out to keep this PR concise.
- We can skip tracking forward views if the base has a forward grad. This can be done by adding extra logic in the `as_view` method. This is left out to keep this PR concise.

Reading guide:
- Updated view handling in [gen_variable_type.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-f6553cec68caeaea36f6c8b14ff76a6d39dfd774e0ea9ef2f76e8d81fd9af5df), [VariableTypeUtils.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-ec71cfa45954dece1236c661d170e6341879c5be637f4abf52e826d61b40695a), [variable.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-60e3bfe444e89efc7149f25b38e472710525984789934ab83f1bd5671b8ff285) (skip code below "[Forward Grad View]" for now), [variable.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-1604bcd0e4350ed99ec45e437cee7ac9ebe337392c9ea16a236247aeeb35b02bR266-R542) and [custom_function.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-dd85f452082b5bb6612bbc12adb496f8827defa228509f7b493de1d517522d5d). This introduces the new ViewInfo to hold view informations shared for forward and backward. It also updates the differentiable view meta to use this. And it updates the as_view function to handle both forward and backward view.
- New forward grad class that handle storing gradients and tracking at each level [forward_grad.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-c6c5b9ab2d7e5dde4102495faa1b6bbbfc23aa3e47deb7359c0bfe1eb004c0cb), [forward_grad.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-de2ab54ade7312701850d71a119a4f4ee4b9fc5a9c42a467cdd4e73c033531dd) and [build_variables.bzl](https://github.com/pytorch/pytorch/pull/49097/files#diff-dfdfa2efb17beddfd9094524f95351fd197db6c8857e96b436fb599870359325). EDIT: These files also contain the new flag to globally disable forward AD that allows us to reduce performance issues while this is in development.
- Lowest level API and binding between Tensor and AutogradMeta in [TensorBody.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-7554853205392fa743357bf845ecc350a974ec049383248c12daaf2f4de04911), [TensorImpl.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-052bd9150ef8e09289ddf644b5a6830ede49207201cd41728f6d7cc6d9cead94), [TensorImpl.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-a15aae4cf23da44970db7cece62ff981265575c798c62f7b52d87c8809dfe2e1) and the rest of [variable.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-60e3bfe444e89efc7149f25b38e472710525984789934ab83f1bd5671b8ff285R557-R677)
- API to access the forward primal that needs to be a differentiable function (and so in native_functions.yaml) [native_functions.yaml](https://github.com/pytorch/pytorch/pull/49097/files#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991) [NamedRegistrations.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-69bd3bea510c9b64e1633fa18c3ea63d4b8348dbad3a78ad9de844ab3e43dc1d), [VariableMethodsStub.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-23f5fcb737a2b289811fe0f4b65aef775e7c824b2e629ecd343df51405cd434f), [derivatives.yaml](https://github.com/pytorch/pytorch/pull/49097/files#diff-e4c2f99a2404e98c3586e07425da73008f36b1bada790648a7297af141d37f8c), [gen_python_functions.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-e4c2f99a2404e98c3586e07425da73008f36b1bada790648a7297af141d37f8c), [gen_trace_type.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-54e0b976027bf8debefb959ff360b89ae93466970c843365b1b3a03806d868ce), [TraceTypeManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-f34636741ad4a23d018e0c289bc750c3bad887b45660e1d6eaf440d234a78fbf) and [part of VariableTypeManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-6e19a1bce8cbdba8714b6e2c794a76bc0864b64a49cfa757cb0b5afdc937d1a4R198-R243)
- c++ API [autograd.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-349028fbe8291a965a7a263c323b208fe071c35c66179ee997ef84fa81aa4b1e), [autograd.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-a3fe908d67dfec16a1fcde300de68b0701bf68b88db7451f29f2bee255cf30c9)
- python binding [init.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-c58a67c85191c22c9b3bb439117d8053edfd9dea839fa010cf967d404c3c630d)
- python API [forward_ad.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-a4efad4ba18fffdfb264c21e5475997a24a743089a899f8ec1a5ff962c6738d9), [autograd/__init__.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-743abcafd32ad0e69f39ac5a91df4197b7e1921c135cacee7ef6dc829a8a7af8)
- c++ and python printing [Formatting.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-881dba501e71662e2e4818b4b016f739b344c8aed2f5edc6b871eda47a2aced0), [_tensor_str.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-a7911f8d5e73adbff914d99fd7818ace2a7030b6a3748abe06ec6fc6e3df9cc3)
- Utility for formulas and updated manual functions to respect new view system as well as forward grad [FunctionsManual.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-6378bb6dc81a64dab676d61731341fa5d1088418f32a1473a33a0ccfc2357dc1), [FunctionsManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-4adbd88239afcd60e8198aab65d4f5e43b62314e34b80551e997a1ea503adea5) [rest of VariableTypeManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-6e19a1bce8cbdba8714b6e2c794a76bc0864b64a49cfa757cb0b5afdc937d1a4R264-R433)
- Ensure SavedVariable save forward grad properly [saved_variable.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-c1b8039d776241abe177d5aa99b79dd9489a9b3e529da8ab24c2e386c1238ae2), [saved_variable.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-cc9fba479b5beae06b2eea2e390d17796e0341c5b037a20b5bcaccbb0c341030)

Test Plan: Imported from OSS

Reviewed By: gchanan

Differential Revision: D25678797

Pulled By: albanD

fbshipit-source-id: 3d58550c11b5f58b9b73fd30596d042b857fb9dd
2020-12-22 12:11:27 -08:00
f5178bf151 Revert D25607503: Add base forward grad logic
Test Plan: revert-hammer

Differential Revision:
D25607503 (fdf02eff3d)

Original commit changeset: f1396290de1d

fbshipit-source-id: 057206e28ff48ee288856adfe3ca577d4880789f
2020-12-21 19:56:28 -08:00
fdf02eff3d Add base forward grad logic (#49097)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49097

RFC: https://github.com/pytorch/rfcs/pull/11

This PR add the basic logic to handle forward grad as dual Tensors.
It contains the following:
- Mechanism to save dual state on a Tensor and clear it up when the dual level ends
- C++ and python user facing API
- Updated view system that is able to track both forward and backward views

The current PR has the following limitations:
- Extensive tests are in the next PR in the stack as formulas are needed to write full tests.
- Only the manual formulas have been audited and no other formula is actually implemented here (they are in the next PR in the stack)
- Only level 0 is allowed for now. This was discussed and agreed that it is not needed for the first version of this PR.
- We can save one ViewInfo creation when both the forward and backward views have the same base. This can be done by adding a boolean flag to the DifferentiableViewMeta and extra logic in the `as_view` method. This is left out to keep this PR concise.
- We can skip tracking forward views if the base has a forward grad. This can be done by adding extra logic in the `as_view` method. This is left out to keep this PR concise.

Reading guide:
- Updated view handling in [gen_variable_type.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-f6553cec68caeaea36f6c8b14ff76a6d39dfd774e0ea9ef2f76e8d81fd9af5df), [VariableTypeUtils.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-ec71cfa45954dece1236c661d170e6341879c5be637f4abf52e826d61b40695a), [variable.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-60e3bfe444e89efc7149f25b38e472710525984789934ab83f1bd5671b8ff285) (skip code below "[Forward Grad View]" for now), [variable.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-1604bcd0e4350ed99ec45e437cee7ac9ebe337392c9ea16a236247aeeb35b02bR266-R542) and [custom_function.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-dd85f452082b5bb6612bbc12adb496f8827defa228509f7b493de1d517522d5d). This introduces the new ViewInfo to hold view informations shared for forward and backward. It also updates the differentiable view meta to use this. And it updates the as_view function to handle both forward and backward view.
- New forward grad class that handle storing gradients and tracking at each level [forward_grad.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-c6c5b9ab2d7e5dde4102495faa1b6bbbfc23aa3e47deb7359c0bfe1eb004c0cb), [forward_grad.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-de2ab54ade7312701850d71a119a4f4ee4b9fc5a9c42a467cdd4e73c033531dd) and [build_variables.bzl](https://github.com/pytorch/pytorch/pull/49097/files#diff-dfdfa2efb17beddfd9094524f95351fd197db6c8857e96b436fb599870359325). EDIT: These files also contain the new flag to globally disable forward AD that allows us to reduce performance issues while this is in development.
- Lowest level API and binding between Tensor and AutogradMeta in [TensorBody.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-7554853205392fa743357bf845ecc350a974ec049383248c12daaf2f4de04911), [TensorImpl.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-052bd9150ef8e09289ddf644b5a6830ede49207201cd41728f6d7cc6d9cead94), [TensorImpl.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-a15aae4cf23da44970db7cece62ff981265575c798c62f7b52d87c8809dfe2e1) and the rest of [variable.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-60e3bfe444e89efc7149f25b38e472710525984789934ab83f1bd5671b8ff285R557-R677)
- API to access the forward primal that needs to be a differentiable function (and so in native_functions.yaml) [native_functions.yaml](https://github.com/pytorch/pytorch/pull/49097/files#diff-2f3dbd85efb9b5172f2264eedd3be47dd765e6ab7cc8bf3ade5e62c28ae35991) [NamedRegistrations.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-69bd3bea510c9b64e1633fa18c3ea63d4b8348dbad3a78ad9de844ab3e43dc1d), [VariableMethodsStub.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-23f5fcb737a2b289811fe0f4b65aef775e7c824b2e629ecd343df51405cd434f), [derivatives.yaml](https://github.com/pytorch/pytorch/pull/49097/files#diff-e4c2f99a2404e98c3586e07425da73008f36b1bada790648a7297af141d37f8c), [gen_python_functions.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-e4c2f99a2404e98c3586e07425da73008f36b1bada790648a7297af141d37f8c), [gen_trace_type.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-54e0b976027bf8debefb959ff360b89ae93466970c843365b1b3a03806d868ce), [TraceTypeManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-f34636741ad4a23d018e0c289bc750c3bad887b45660e1d6eaf440d234a78fbf) and [part of VariableTypeManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-6e19a1bce8cbdba8714b6e2c794a76bc0864b64a49cfa757cb0b5afdc937d1a4R198-R243)
- c++ API [autograd.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-349028fbe8291a965a7a263c323b208fe071c35c66179ee997ef84fa81aa4b1e), [autograd.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-a3fe908d67dfec16a1fcde300de68b0701bf68b88db7451f29f2bee255cf30c9)
- python binding [init.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-c58a67c85191c22c9b3bb439117d8053edfd9dea839fa010cf967d404c3c630d)
- python API [forward_ad.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-a4efad4ba18fffdfb264c21e5475997a24a743089a899f8ec1a5ff962c6738d9), [autograd/__init__.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-743abcafd32ad0e69f39ac5a91df4197b7e1921c135cacee7ef6dc829a8a7af8)
- c++ and python printing [Formatting.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-881dba501e71662e2e4818b4b016f739b344c8aed2f5edc6b871eda47a2aced0), [_tensor_str.py](https://github.com/pytorch/pytorch/pull/49097/files#diff-a7911f8d5e73adbff914d99fd7818ace2a7030b6a3748abe06ec6fc6e3df9cc3)
- Utility for formulas and updated manual functions to respect new view system as well as forward grad [FunctionsManual.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-6378bb6dc81a64dab676d61731341fa5d1088418f32a1473a33a0ccfc2357dc1), [FunctionsManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-4adbd88239afcd60e8198aab65d4f5e43b62314e34b80551e997a1ea503adea5) [rest of VariableTypeManual.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-6e19a1bce8cbdba8714b6e2c794a76bc0864b64a49cfa757cb0b5afdc937d1a4R264-R433)
- Ensure SavedVariable save forward grad properly [saved_variable.h](https://github.com/pytorch/pytorch/pull/49097/files#diff-c1b8039d776241abe177d5aa99b79dd9489a9b3e529da8ab24c2e386c1238ae2), [saved_variable.cpp](https://github.com/pytorch/pytorch/pull/49097/files#diff-cc9fba479b5beae06b2eea2e390d17796e0341c5b037a20b5bcaccbb0c341030)

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D25607503

Pulled By: albanD

fbshipit-source-id: f1396290de1d75760f3d380c43cdd56e86fa6099
2020-12-21 14:39:43 -08:00
7feec06dfe Only 1 TensorImpl allocation in differentiable views. (#48896)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/48896

Test Plan: Imported from OSS

Reviewed By: pbelevich

Differential Revision: D25380895

Pulled By: ailzhang

fbshipit-source-id: 4d565e6312e860a2ff185a3f8b552005ddd29695
2020-12-10 17:39:40 -08:00
48569cc330 Reland split (#41567)
Summary:
Take 3

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41567

Reviewed By: zou3519

Differential Revision: D22586331

Pulled By: albanD

fbshipit-source-id: ca08199da716d64a335455610edbce752fee224b
2020-07-21 08:06:27 -07:00
b1d4e33c8b Revert D22552377: [pytorch][PR] Reland split unsafe version
Test Plan: revert-hammer

Differential Revision:
D22552377 (5bba973afd)

Original commit changeset: 1d1b713d2429

fbshipit-source-id: 8194458f99bfd5f077b7daa46ca3e81b549adc1b
2020-07-16 15:24:19 -07:00
45c5bac870 [WIP] Fix cpp grad accessor API (#40887)
Summary:
Update the API to access grad in cpp to avoid unexpected thread safety issues.
In particular, with the current API, a check like `t.grad().defined()` is not thread safe.

- This introduces `t.mutable_grad()` that should be used when getting a mutable version of the saved gradient. This function is **not** thread safe.
- The `Tensor& grad()` API is now removed. We could not do a deprecation cycle as most of our call side use non-const Tensors that use the non-const overload. This would lead to most calls hitting the warning. This would be too verbose for all the users.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40887

Reviewed By: ezyang

Differential Revision: D22343932

Pulled By: albanD

fbshipit-source-id: d5eb909bb743bc20caaf2098196e18ca4110c5d2
2020-07-16 09:11:12 -07:00
5bba973afd Reland split unsafe version (#41484)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/39299

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41484

Reviewed By: glaringlee

Differential Revision: D22552377

Pulled By: albanD

fbshipit-source-id: 1d1b713d2429ae162e04bda845ef0838c52df789
2020-07-16 09:01:45 -07:00
359cdc20e2 Revert D22432885: [pytorch][PR] unsafe_split, unsafe_split_with_sizes, unsafe_chunk operations
Test Plan: revert-hammer

Differential Revision:
D22432885 (c17670ac50)

Original commit changeset: 324aef091b32

fbshipit-source-id: 6b7c52bde46932e1cf77f61e7035d8a641b0beb6
2020-07-14 16:06:42 -07:00
c17670ac50 unsafe_split, unsafe_split_with_sizes, unsafe_chunk operations (#39299)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/36403

Copy-paste of the issue description:

* Escape hatch: Introduce unsafe_* version of the three functions above that have the current behavior (outputs not tracked as views). The documentation will explain in detail why they are unsafe and when it is safe to use them. (basically, only the outputs OR the input can be modified inplace but not both. Otherwise, you will get wrong gradients).
* Deprecation: Use the CreationMeta on views to track views created by these three ops and throw warning when any of the views is modified inplace saying that this is deprecated and will raise an error soon. For users that really need to modify these views inplace, they should look at the doc of the unsafe_* version to make sure their usecase is valid:
  * If it is not, then pytorch is computing wrong gradients for their use case and they should not do inplace anymore.
  * If it is, then they can use the unsafe_* version to keep the current behavior.
* Removal: Use the CreationMeta on view to prevent any inplace on these views (like we do for all other views coming from multi-output Nodes). The users will still be able to use the unsafe_ versions if they really need to do this.

Note about BC-breaking:
- This PR changes the behavior of the regular function by making them return proper views now. This is a modification that the user will be able to see.
- We skip all the view logic for these views and so the code should behave the same as before (except the change in the `._is_view()` value).
- Even though the view logic is not performed, we do raise deprecation warnings for the cases where doing these ops would throw an error.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/39299

Differential Revision: D22432885

Pulled By: albanD

fbshipit-source-id: 324aef091b32ce69dd067fe9b13a3f17d85d0f12
2020-07-14 14:15:41 -07:00
0f1669181a Add specific list of supported types in autograd (#38325)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38325

Test Plan: Imported from OSS

Differential Revision: D21668739

Pulled By: albanD

fbshipit-source-id: 2e6ebaa36e41a084aed0a8e1e16b6e37e36a1910
2020-05-21 08:28:06 -07:00
6e92579883 Added autograd support for C->C functions and enabled requires_grad=True for complex (#36932)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/36932

Differential Revision: D21181230

Pulled By: anjali411

fbshipit-source-id: 295f2cd1e2b9918a8b2cb88cab0536b2407dc455
2020-04-24 12:30:49 -07:00
30dd0b74fd Save view_fn for inplace update on view tensors (#36073)
Summary:
This PR enables inplace updates on view Tensors for tensor types(XLA) that doesn't support as_strided.
(See Notes inside PR)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36073

Reviewed By: yf225

Differential Revision: D20994282

Pulled By: ailzhang

fbshipit-source-id: 83eeccb297b242f9822f08ad110a7045d7055639
2020-04-15 20:11:27 -07:00
901bb3c350 Delete as_variable_ref (#36096)
Summary:
This PR closes https://github.com/pytorch/pytorch/issues/34895 and builds on work started by ayushtues in https://github.com/pytorch/pytorch/pull/35184
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36096

Reviewed By: zou3519

Differential Revision: D20893693

Pulled By: astaff

fbshipit-source-id: 13aac1feaef3bcf86f7a4cf92d26e7a1ae43a3b3
2020-04-08 08:57:01 -07:00
86f3305859 Improve C++ API autograd and indexing docs (#35777)
Summary:
This PR adds docs for the following components:
1. Tensor autograd APIs (such as `is_leaf` / `backward` / `detach` / `detach_` / `retain_grad` / `grad` / `register_hook` / `remove_hook`)
2. Autograd APIs: `torch::autograd::backward` / `grad` / `Function` / `AutogradContext`, `torch::NoGradGuard` / `torch::AutoGradMode`
3. Tensor indexing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35777

Differential Revision: D20810616

Pulled By: yf225

fbshipit-source-id: 60526ec0c5b051021901d89bc3b56861c68758e8
2020-04-02 09:33:11 -07:00
8908b62fb2 Clean views created inside no_grad that are modified inplace (#32839)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32839

As mentioned in the updated comment in `variable.h`, this disambiguate code like:
```python
base = torch.rand(10, requires_grad=True)
with torch.no_grad():
    view = base[1]
view.copy_(var)
torch.autograd.grad(base.sum(), var)  # <- what should it return?
```
Given that there is no consensus of what should happen here (does the gradient flow through the view in the no_grad or not). This special case is detected and forbidden.
As mentionned in the error message:
- If you want it to be tracked: move both out of the no_grad
- If do not want them to be tracked, move both inside the no_grad

This implies that any custom Function that returns views does not allow inplace modification on its output. I'll add a PR to the stack to relax this to be a DeprecationWarning for now. And we will make it into an actual error for 1.6

This replaces https://github.com/pytorch/pytorch/pull/26607
cc sublee

Test Plan: Imported from OSS

Differential Revision: D19814114

Pulled By: albanD

fbshipit-source-id: ff2c9d97c8f876d9c31773a2170e37b06d88bed7
2020-02-19 14:55:53 -08:00
5d7f42847c Add at::Tensor::retain_grad API (#33349)
Summary:
This PR adds `at::Tensor::retain_grad`, and its implementation mirrors the Python `torch.Tensor.retain_grad` API:
c6271c63f2/torch/tensor.py (L292-L315)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33349

Differential Revision: D19944524

Pulled By: yf225

fbshipit-source-id: e61d5d761996b6d1b860c04c4b4650c1a49a6a8c
2020-02-17 20:03:48 -08:00
3655975565 Add allow_rebase_history flag and fix codegen functions for multiple views (#32790)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32790

Same as https://github.com/pytorch/pytorch/pull/31990 but without the first commit in the stack that is problematic for a lot of people.

Test Plan: Imported from OSS

Differential Revision: D19814116

Pulled By: albanD

fbshipit-source-id: d104911a5b098a5807b4bc08b69803ebd4f69fa6
2020-02-11 07:16:02 -08:00
db8ce7ea2d Back out "Make autogen functions correct for multiple outputs and views" (#32681)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32681

Original commit changeset: a2b41c2d231e

Test Plan: fb and oss tests

Reviewed By: hudeven

Differential Revision: D19591864

fbshipit-source-id: 7068b5563e37bc9a5d415fd535c73fd9d71fe131
2020-01-27 19:54:34 -08:00
3ab30753e9 Make autogen functions correct for multiple outputs and views (#31990)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31990

This PR does three things:
- Add a new `allow_rebase_history` flag to the differentiable views. If set, trying to rebase their history will raise an error.
- Make sure that the codegen functions verify this flag before doing inplace operations so that they fail before doing the inplace modification.
- Make sure the codegen functions set this flag properly when we don't support rebasing the history of the output.

The codegen change can be found [here](4bf180caa0).

Test Plan: Imported from OSS

Differential Revision: D19409649

Pulled By: albanD

fbshipit-source-id: a2b41c2d231e952ecfe162bdb6bad620ac595703
2020-01-24 14:32:28 -08:00
643ca5def2 Replace c10::guts::stuff with std::stuff (#30915)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30915

Since we now have C++14, we don't need these c10::guts helpers anymore
ghstack-source-id: 95777609

Test Plan: waitforsandcastle

Differential Revision: D18869639

fbshipit-source-id: 97716f932297c64c6e814410ac47b444c33d4e2e
2019-12-16 13:57:19 -08:00
9e81616343 Merge Tensor and Variable types. (#28287)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28287

This PR eliminates the static distinction between
Tensor and Variable.  Every Variable is a Tensor, no need to static_cast
or call the Variable constructor.

To do this, I need Tensor to have API parity with Variable. I have already
moved most of the methods I don't want in Tensor off Variable.
These implementations are all placed in Tensor.cpp.

One API difference is that all Variable methods now have const, so we no longer
have faux const-correctness (see https://github.com/zdevito/ATen/issues/27 for
back story)

This diff is BC breaking in a few ways:
- Because torch::autograd::Variable is now just an alias of at::Tensor, ADL for
  `torch::autograd` functions no longer works, you have to explicitly qualify
  them with `torch::autograd` (examples: `torch/nn/parallel/data_parallel.h`)
- Because Variable and Tensor are now the same type, code which assumes that
  they are different types (e.g., for the purposes of templating, or enable_if checks)
  will not work until you delete the (now) redundant overload/specialization.
  (examples: `torch/nn/modules/container/any.h`, `torch/csrc/utils/pybind.h`)

Some other notes:
- I'm not sure what was going with the old template implementation of `extract_vars`,
  but I couldn't get the sfinae version to work. Replacing it with an overloading based version
  made it work.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18571426

Pulled By: ezyang

fbshipit-source-id: 2ea8151e5f1d8512cdebf1345399642e68b707b8
2019-11-21 09:26:39 -08:00
f6cadad174 Delete redefinitions of methods in Variable already present on Tensor. (#29667)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29667

Some previous implementations are defined in native_functions.yaml.
In this case, I don't define them explicitly in Tensor; instead
they are placed in VariableTypeManual.cpp. When I did this, I would
have deleted documentation; instead, this documentation was moved
to native_functions.yaml

This also replaces `current_version` with just `_version`.

This is a carved out portion of #28287, rebased past Tensor-Variable
merge.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18504934

Pulled By: ezyang

fbshipit-source-id: be7adf45b637daffe2b0b1631eb31d967525fc31
2019-11-18 08:12:16 -08:00
1ab2f043ba Move most methods off Variable into torch::autograd::impl functions. (#29665)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29665

Our intention is to merge the static distinction between Tensor and
Variable.  Ordinarily, this would entail merging the methods of Tensor
and Variable.  But there are a lot of "private"-ish methods on Variable
that we don't actually want to dump onto the Tensor class.  So, as prep
work, we move all of those methods off of Variable and into
the torch::autograd::impl namespace (impl as in, please don't use this
end users).  This ends up being a fairly large patch because all of
the call sites have to play ball too.

While I was on the topic, I also moved any of the touched functions into
the C++ file, so that modifying them would not trigger a recompilation of
all of torch.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18496169

Pulled By: ezyang

fbshipit-source-id: afb203252620ec274be596b3e7b1d84d321bad3a
2019-11-18 08:12:12 -08:00
422fbfb108 Fix some issues for lite interpreter internal build. (#29620)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29620

Modify buck for lite interpreter to build successfully on internal integration.
ghstack-source-id: 93733618

Test Plan: buck build xplat/caffe2:torch_mobile_coreAndroid

Reviewed By: iseeyuan

Differential Revision: D18438105

fbshipit-source-id: d6f6615623a385383105763733607c3872c89c42
2019-11-12 16:16:42 -08:00
4e21157e01 Revert "Revert D18171156: Merge Tensor and Variable." (#29299)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29299

This reverts commit 9c43b16df9dad3dfb4da1efab68d8c88e6437e8f, but also
with the changes from D18348622.  Comments there:

thpp-compatibility is used by admarket/adreview/service:adreviewservice and
libtorch is too big for the service to deal with.

thpp-compatibility doesn't support autograd, so we hack around dispatching
variables by using AutoNonVariableTypeMode everywhere we call into ATen,
so we never attempt to call into Variable stubs.  If you get it wrong,
you'll get an error like:

```
what():  Could not run 'aten::empty' with arguments from the 'VariableTensorId' backend. 'aten::empty' is only available for these backends: [SparseCPUTensorId, CPUTensorId, MkldnnCPUTensorId]. (lookup_ at caffe2/aten/src/ATen/core/dispatch/DispatchTable.h:298)
```

Test Plan:
Imported from OSS

```
buck test //thpp-compatibility/...
buck build mode/opt-clang admarket/adreview/service:adreviewservice
```

adreviewservice canary: https://our.intern.facebook.com/intern/ads/canary/422290029716387895 (comparing against parent comment due to current breakage) ==> experiment store https://our.intern.facebook.com/intern/experiment_store/experiment/43990006/
adfinder canary: https://our.intern.facebook.com/intern/ads/canary/422268535840333934
adindexer canary: https://our.intern.facebook.com/intern/ads/canary/422268550559034675

adreview second canary:  https://our.intern.facebook.com/intern/ads/canary/422307863515591925

canary without thpp-compat fixups https://our.intern.facebook.com/intern/ads/canary/422308951649168772

Reviewed By: dreiss

Differential Revision: D18353504

Pulled By: ezyang

fbshipit-source-id: 65feaba39fa07bb66762810909aeb38868668a30
2019-11-08 09:11:20 -08:00
9c43b16df9 Revert D18171156: Merge Tensor and Variable.
Test Plan: revert-hammer

Differential Revision:
D18171156

Original commit changeset: 5b6a045beba3

fbshipit-source-id: f5581d902c2305018ea49f8473592be2a465560b
2019-11-06 10:57:00 -08:00
25261a4776 Merge Tensor and Variable. (#28620)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28620

All Tensors are Variables now, they just happen to have requires_grad=False. Tensors ALWAYS have `VariableTensorId` in their type set.

When constructing this patch, I had to make decisions about what I would fix in this patch, and what I would leave for follow up PRs. Here is the cleanup that happens in this patch:

- The `is_variable` property is removed from TensorOptions. I removed this immediately because unlike Tensor::is_variable, TensorOptions::is_variable doesn't respect our VariableTensorId thread-local state. This means that there were a bunch of places where TensorOptions::is_variable was false, which is obviously bogus in the world when tensor and variable are merged. Instead of keeping the method as a function that always returns true, I just opted to remove it entirely (it's not public API.) All places we set `is_variable` are deleted.
  - Knock on effect: there is no longer a separate DeprecatedTypeProperties for the variable and non-variable versions of type.
  - Knock on effect: instead of asserting on TensorOptions::is_variable, instead we just test `at::impl::variable_is_excluded()`
- There is now only one copy of the cuDNN RNN dropout cache, not two (I'm not sure why we had two to begin with)

Some cleanup that doesn't happen in this patch:
- Eliminating unnecessary uses of `make_variable`
- Eliminating `Tensor::is_variable`

The most subtle part of this patch is retaining tracing behavior: the fact that everything is a Variable means that more code gets routed to VariableType than before; this can change traces. I identified two places where we didn't appropriately turn off VariableType, mostly factory functions:

- `torch.tensor` must turn off VariableType before invoking `at::empty` to construct the tensor, as it subsequently does direct data access
- `tensor_slow` (invoked when you pass a Python scalar to a tensor argument) must turn off VariableType before calling `scalar_to_tensor` so the scalar gets traced as constant, rather than as a call to `scalar_to_tensor`.

Honestly, these are all giant hacks, and should be replaced with a more specialized guard that just toggles tracing.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: dreiss

Differential Revision: D18171156

Pulled By: ezyang

fbshipit-source-id: 5b6a045beba37492647e350190f495114e86504d
2019-11-04 14:59:57 -08:00
80b46ca35a Null AutogradMeta optimization (#28610)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28610

The basic idea is, in some cases where we stored a pointer to a full AutogradMeta object, instead store a nullptr. We let a nullptr represent a default-constructed AutogradMeta object, and simply populate it with a real AutogradMeta if there is ever a situation where we need to modify it.

The primary technical contrivance in this diff is I have to use AutogradMetaFactory to lazily initialize the AutogradMeta, as it is not available in the dynamic library that TensorImpl is in. (I spent a while trying to put them in the same compilation unit, but gave up in the end as it pushed us over the Windows linking binary size limit. Eep.)

Some other notes:
- `set_autograd_meta` now unconditionally turns a tensor into a variable. I audited all call sites and observed there are no occurrences where nullptr is passed (after this patch, there are now!)
- `copy_tensor_metadata` is updated to unconditionally preserve the VariableTensorId-ness of the destination tensor. I think this is the more correct semantics; we can't do the old semantics anymore.
- There's a bunch of places in the API where we return const references to objects. This is pretty weird to me, but I didn't feel like cleaning it up. But sometimes I don't conveniently have something that's the right lifetime, so I introduced a number of singletons to handle this correctly.

You might wonder why I'm doing the optimization before the variable-tensor dynamic merge. The reason is simple: this change is semantics preserving, while variable-tensor dynamic merge is not. So it is easier to get right, and prevents us from regressing performance if we do it the other way.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18171162

Pulled By: ezyang

fbshipit-source-id: 580df729e4d04881b2b9caa0f0c00785b3afbb92
2019-10-31 11:45:16 -07:00
b52ceec80b Remove unused gradient_edge argument from make_variable_view (#28602)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28602

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D18171163

Pulled By: ezyang

fbshipit-source-id: 3f3d4cf0bd05c302f502795a04ecace0fc064255
2019-10-31 11:45:07 -07:00