Summary:
Apple recently announced ML Compute, a new framework available in macOS Big Sur, which enables users to accelerate the training of neural networks on Mac hardware. This PR is the first on a series of PRs that will enable the integration with ML Compute. Most of the integration code will live on a separate subrepo named `mlc`.
The integration with `mlc` (ML Compute) will be very similar to that of xla. We rely on registering our ops through:
TORCH_LIBRARY_IMPL(aten, PrivateUse1, m) {
m.impl_UNBOXED(<op_schema_name>, &customized_op_kernel)
...
}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50634
Reviewed By: malfet
Differential Revision: D26614213
Pulled By: smessmer
fbshipit-source-id: 3b492b346c61cc3950ac880ac01a82fbdddbc07b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51754
This API allows you to manage multiple python interpreters in a single
process to deploy PyTorch models packaged with torch.package.
torch/csrc/deploy/deploy.h contains the API definition
torch/csrc/deploy/test_deploy.cpp has some examples.
Notes:
* mutex is added to PyTorchStreamReader to make it safe to use from multiple threads at once.
* USE_DEPLOY is only true for the special libtorch_deployinterpreter.so library, when enabled
we use a hash table to maintain PyObject <> at::Tensor mappping rather than the internal pointer
in Tensor since >1 interpreter may have a reference to the tensor.
* serialization.py has some additional functions for creating pickle objects
but keeping storages in memory for use transfering tensors between interpreters
Test Plan: Imported from OSS
Reviewed By: wconstab
Differential Revision: D26329468
Pulled By: zdevito
fbshipit-source-id: d75f4ebb9a27f1d911179d9996041bcb3ca04a07
Summary:
Add a new device type 'XPU' ('xpu' for lower case) to PyTorch. Changes are needed for code related to device model and kernel dispatch, e.g. DeviceType, Backend and DispatchKey etc.
https://github.com/pytorch/pytorch/issues/48246
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49786
Reviewed By: mrshenli
Differential Revision: D25893962
Pulled By: ezyang
fbshipit-source-id: 7ff0a316ee34cf0ed6fc7ead08ecdeb7df4b0052
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48963
This PR makes the binding code treat `Parameter` the same way as `Tensor`, unlike all other `Tensor` subclasses. This does change the semantics of `THPVariable_CheckExact`, but it isn't used much and it seemed to make sense for the half dozen or so places that it is used.
Test Plan: Existing unit tests. Benchmarks are in #48966
Reviewed By: ezyang
Differential Revision: D25590733
Pulled By: robieta
fbshipit-source-id: 060ecaded27b26e4b756898eabb9a94966fc9840
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46356
Adding the flag `-Werror=cast-function-type` to ensure we don't allow
any invalid casts (ex: PyCFunction casts).
For more details see: https://github.com/pytorch/pytorch/issues/45419
ghstack-source-id: 114632980
Test Plan: waitforbuildbot
Reviewed By: albanD
Differential Revision: D24319759
fbshipit-source-id: 26ce4650c220e8e9dd3550245f214c7e6c21a5dc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46227
Follow up from https://github.com/pytorch/pytorch/issues/45419, in
this PR I've removed as many PyCFunction casts as I could from the codebase.
The only ones I didn't remove were the ones with `METH_VARARGS | METH_KEYWORDS`
which have 3 parameters instead of 2 and had to be casted. Example: `
{"copy_", (PyCFunction)(void(*)(void))THPStorage_(copy_), METH_VARARGS |
METH_KEYWORDS, nullptr},`
ghstack-source-id: 114632704
Test Plan: waitforbuildbot
Reviewed By: albanD
Differential Revision: D24269435
fbshipit-source-id: 025cfd43a9a2a3e59f6b2951c1a78749193d77cf
Summary:
This PR fixes unexpected `SystemError` when warnings are emitted and warning filters are set.
## Current behavior
```
$ python -Werror
>>> import torch
>>> torch.range(1, 3)
UserWarning: torch.range is deprecated in favor of torch.arange and will be removed in 0.5. Note that arange generates values in [start; end), not [start; end].
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
SystemError: <built-in method range of type object at 0x7f38c7703a60> returned a result with an error set
```
## Expected behavior
```
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
UserWarning: torch.range is deprecated and will be removed in a future release because its behavior is inconsistent with Python's range builtin. Instead, use torch.arange, which produces values in [start, end).
```
## Note
Python exception must be raised if `PyErr_WarnEx` returns `-1` ([python docs](https://docs.python.org/3/c-api/exceptions.html#issuing-warnings)). This PR fixes warnings raised in the following code:
```py
import torch
torch.range(1, 3)
torch.autograd.Variable().volatile
torch.autograd.Variable().volatile = True
torch.tensor(torch.tensor([]))
torch.tensor([]).new_tensor(torch.tensor([]))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44371
Reviewed By: mrshenli
Differential Revision: D23598410
Pulled By: albanD
fbshipit-source-id: 2fbcb13fe4025dbebaf1fd837d4c8e0944e05010
Summary:
This is a follow-up PR for https://github.com/pytorch/pytorch/issues/37091, fixing some of the quirks of that PR as that one was landed early to avoid merge conflicts.
This PR addresses the following action items:
- [x] Use error-handling macros instead of a `try`-`catch`.
- [x] Renamed and added comments to clarify the use of `HANDLED_FUNCTIONS_WRAPPERS` in tests. `HANDLED_FUNCTIONS_NAMESPACES` was already removed in the last PR as we had a way to test for methods.
This PR does NOT address the following action item, as it proved to be difficult:
- [ ] Define `__module__` for whole API.
Single-line repro-er for why this is hard:
```python
>>> torch.Tensor.grad.__get__.__module__ = "torch.Tensor.grad"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method-wrapper' object has no attribute '__module__'
```
Explanation: Methods defined in C/properties don't always have a `__dict__` attribute or a mutable `__module__` slot for us to modify.
The documentation action items were addressed in the following commit, with the additional future task of adding the rendered RFCs to the documentation: 552ba37c05
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42806
Reviewed By: smessmer
Differential Revision: D23031501
Pulled By: ezyang
fbshipit-source-id: b781c97f7840b8838ede50a0017b4327f96bc98a
Summary:
According to pytorch/rfcs#3
From the goals in the RFC:
1. Support subclassing `torch.Tensor` in Python (done here)
2. Preserve `torch.Tensor` subclasses when calling `torch` functions on them (done here)
3. Use the PyTorch API with `torch.Tensor`-like objects that are _not_ `torch.Tensor`
subclasses (done in https://github.com/pytorch/pytorch/issues/30730)
4. Preserve `torch.Tensor` subclasses when calling `torch.Tensor` methods. (done here)
5. Propagating subclass instances correctly also with operators, using
views/slices/indexing/etc. (done here)
6. Preserve subclass attributes when using methods or views/slices/indexing. (done here)
7. A way to insert code that operates on both functions and methods uniformly
(so we can write a single function that overrides all operators). (done here)
8. The ability to give external libraries a way to also define
functions/methods that follow the `__torch_function__` protocol. (will be addressed in a separate PR)
This PR makes the following changes:
1. Adds the `self` argument to the arg parser.
2. Dispatches on `self` as well if `self` is not `nullptr`.
3. Adds a `torch._C.DisableTorchFunction` context manager to disable `__torch_function__`.
4. Adds a `torch::torch_function_enabled()` and `torch._C._torch_function_enabled()` to check the state of `__torch_function__`.
5. Dispatches all `torch._C.TensorBase` and `torch.Tensor` methods via `__torch_function__`.
TODO:
- [x] Sequence Methods
- [x] Docs
- [x] Tests
Closes https://github.com/pytorch/pytorch/issues/28361
Benchmarks in https://github.com/pytorch/pytorch/pull/37091#issuecomment-633657778
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37091
Reviewed By: ngimel
Differential Revision: D22765678
Pulled By: ezyang
fbshipit-source-id: 53f8aa17ddb8b1108c0997f6a7aa13cb5be73de0
Summary:
Update the API to access grad in cpp to avoid unexpected thread safety issues.
In particular, with the current API, a check like `t.grad().defined()` is not thread safe.
- This introduces `t.mutable_grad()` that should be used when getting a mutable version of the saved gradient. This function is **not** thread safe.
- The `Tensor& grad()` API is now removed. We could not do a deprecation cycle as most of our call side use non-const Tensors that use the non-const overload. This would lead to most calls hitting the warning. This would be too verbose for all the users.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40887
Reviewed By: ezyang
Differential Revision: D22343932
Pulled By: albanD
fbshipit-source-id: d5eb909bb743bc20caaf2098196e18ca4110c5d2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38490
A meta tensor is a tensor that is a lot like a normal tensor,
except it doesn't actually have any data associated with it.
You can use them to carry out shape/dtype computations without
actually having to run the actual code; for example, this could
be used to do shape inference in a JIT analysis pass.
Check out the description in DispatchKey.h for more information.
Meta tensors are part of a larger project to rationalize how we
write kernels so that we don't have to duplicate shape logic
in CPU kernel, CUDA kernel and meta kernel (this PR makes the
duplication problem worse!) However, that infrastructure can
be built on top of this proof of concept, which just shows how
you can start writing meta kernels today even without this
infrastructure.
There are a lot of things that don't work:
- I special cased printing for dense tensors only; if you try to
allocate a meta sparse / quantized tensor things aren't going
to work.
- The printing formula implies that torch.tensor() can take an
ellipsis, but I didn't add this.
- I wrote an example formula for binary operators, but it isn't
even right! (It doesn't do type promotion of memory layout
correctly). The most future proof way to do it right is to
factor out the relevant computation out of TensorIterator,
as it is quite involved.
- Nothing besides torch.add works right now
- Meta functions are ALWAYS included in mobile builds (selective
build doesn't work on them). This isn't a big deal for now
but will become more pressing as more meta functions are added.
One reason I'm putting up this PR now is to check with Yinghai Lu
if we can unblock shape inference for accelerators, while we are
still working on a long term plan for how to unify all shape
computation across our kernels.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D21935609
Pulled By: ezyang
fbshipit-source-id: f7d8636eeb8516b6bc296db99a16e56029972eee
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39033
Added `real` and `imag` views as tensor attributes. Right now, tensor.imag is disabled for real tensors. This is because if we return a new tensor of zeros, the user would be able to update the tensor returned by tensor.imag which should not be allowed as numpy returns a read-only array, and pytorch doesn't support read-only tensors yet.
TODO in follow-up PRs:
1. add a setter for `real` and `imag`
2. add special case in codegen for `real` and `imag` backward functions.
3. remove `copy_real` and `copy_imag` methods.
Test Plan: Imported from OSS
Differential Revision: D21767542
Pulled By: anjali411
fbshipit-source-id: 539febf01f01ff055e3fbc7e9ff01fd3fe729056
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37527
This is yet another place that needs to be updated for adding a new "Backend" and is unnecessary. Instead, just use layout_from_backend and have a map from Layout -> THPLayout.
Other changes:
- rename torch::getDtype and torch::getLayout to torch::getTHPDtype and torch::getTHPLayout since e.g. for layout you are both passing in and returning a "layout" type.
- add NumOptions to Layout to match the dtype/ScalarType formulation.
Test Plan: Imported from OSS
Differential Revision: D21309836
Pulled By: gchanan
fbshipit-source-id: ede0e4f3bf7ff2cd04a9b17df020f0d4fd654ba3
Summary:
This PR renames `at::Tensor::base()` to `at::Tensor::_base()`, to achieve parity with Python `torch.Tensor._base` API.
----
This PR is BC-breaking in the following way:
Previously, to get the tensor that this tensor is a view of, the user would call `tensor.base()` in C++. Now, they must call `tensor._base()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33316
Differential Revision: D19905687
Pulled By: yf225
fbshipit-source-id: 949d97b707b2c82becb99ac89e9ac24359d183e6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117
After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.
I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```
Test Plan: - wait for CI
Differential Revision: D18934952
Pulled By: zou3519
fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894
This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.
Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros
Reasons for not removing the macros:
- potential for feature flagging
Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.
In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.
[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.
[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.
Test Plan: - wait for CI
Differential Revision: D18858543
Pulled By: zou3519
fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.
I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281
Differential Revision: D18830818
Pulled By: ezyang
fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
Summary:
Given that pybind11 implements these gil functions, I don't think it makes sense for Pytorch to have its own bespoke versions.
Fixes https://github.com/pytorch/pytorch/issues/29065
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29095
Differential Revision: D18301806
Pulled By: ezyang
fbshipit-source-id: 03da6a26c41ee65aaadf7b67b9f0b14d2def2a5a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29667
Some previous implementations are defined in native_functions.yaml.
In this case, I don't define them explicitly in Tensor; instead
they are placed in VariableTypeManual.cpp. When I did this, I would
have deleted documentation; instead, this documentation was moved
to native_functions.yaml
This also replaces `current_version` with just `_version`.
This is a carved out portion of #28287, rebased past Tensor-Variable
merge.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18504934
Pulled By: ezyang
fbshipit-source-id: be7adf45b637daffe2b0b1631eb31d967525fc31
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29665
Our intention is to merge the static distinction between Tensor and
Variable. Ordinarily, this would entail merging the methods of Tensor
and Variable. But there are a lot of "private"-ish methods on Variable
that we don't actually want to dump onto the Tensor class. So, as prep
work, we move all of those methods off of Variable and into
the torch::autograd::impl namespace (impl as in, please don't use this
end users). This ends up being a fairly large patch because all of
the call sites have to play ball too.
While I was on the topic, I also moved any of the touched functions into
the C++ file, so that modifying them would not trigger a recompilation of
all of torch.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18496169
Pulled By: ezyang
fbshipit-source-id: afb203252620ec274be596b3e7b1d84d321bad3a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29653
I didn't remove is_variable from Tensor for BC reasons, but I did
remove as many uses as I could from the codebase.
at::impl::variable_excluded_from_dispatch got moved to TensorBody.h
so that it's more widely accessible.
This diff is NOT semantics preserving. Here are the major differences:
- In a number of native operator implementations, we tested that arguments
are not variable. I replaced these with asserts that variable is
excluded from dispatch. I actually don't think these asserts are really
necessary now (they should certainly be true, but it's hard to get
it wrong), but I've kept them for old time's sake. At least, they'll detect
if you call these functions before you've processed variable (indicating
a bug in your kernel.)
- There are a number of places where we do a per-tensor test for being a
variable, for better error reporting when someone commits Tensor/Variable
confusion. Although these tests are substantively the same as the
tests above, in these cases I decided to *delete* the test entirely.
The reasoning is that in these cases, we didn't really care about
dispatch (also, see above; I'm not too sure we really need the dispatch
asserts), we cared about Tensor/Variable confusion. Since Tensor/Variable
confusion is impossible now, we don't need the tests. One of the key
factors which pushed me one way or another was whether or not a function
was doing per-tensor validation; if I kept the assert in such functions,
I'd repeatedly access the TLS. Even if we want to bring back the asserts,
they would have to go somewhere else.
Another similar idiom is the number of places we do !x.defined() ||
x.is_variable(); I treated this equivalently.
- nuclear_norm's computation of compute_uv is a bit weird, but I think
it's OK to just delete the is_variable case (I *suspect* that it is
always the case that self.is_variable(), but it doesn't really matter.)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18496168
Pulled By: ezyang
fbshipit-source-id: 5a1ded931e0c10a6b758ba64a8380d34110e0c3e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29213
A trivial use of make_variable is one where requires_grad=False. This
transformation is not technically semantics preserving, as make_variable
will create a shallow copy of the tensor in question; however, I
am guessing that we have the invariant that we don't actually make
use of this shallow copy in a nontrivial way.
There were some cases where the surrounding code expected a Variable proper
to be returned; I retained those sites.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353503
Pulled By: ezyang
fbshipit-source-id: 57fe34d82e009c0cc852266fb0b79d6d9c62bb03
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060
This PR enables BUILD_NAMEDTENSOR by default. This is done via including
a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`.
In the future, the plan is to get rid of the flag entirely: we can
incrementally delete usages after this PR goes in.
This PR also maintains the namedtensor ci vs regular ci distinction.
`test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified.
TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this
distinction later and send out an announcement about it; devs will be
responsible for named tensor failures after that.
The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we
could quickly prototype named tensor features without worrying about
adding overhead to the framework. The overheads can be categorized as
memory overhead and performance overhead.
Memory overhead: named tensors adds 1 additional word per Tensor. This
is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>`
field. This is not a lot of overhead.
Performance overhead: At all entry points to name inference, we check
if inputs to an op are named. If inputs are not named, we short-circuit
and don't do name inference. These calls should therefore be as
efficient as error-checking code and not take up a lot of time.
My plan is to benchmark a few functions and then post the results in a
comment to this PR.
Test Plan: - [namedtensor ci]
Differential Revision: D17331635
Pulled By: zou3519
fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25308
Instead of storing a single TensorTypeId in a Tensor, we store a bitset of tensor type IDs in a Tensor, TensorTypeSet. This class comes with some unit tests. This is in preparation for making Variable a TensorTypeId. In order to help flush out places where this makes a semantic difference, we rename `Tensor::type_id()` to `Tensor::type_set()` and smoke out all of the locations where this was semantically meaningful.
Because the new tensor type set is 64-bits, this increases the size of Tensor by a word.
Listing of semantic changes:
* Many TensorImpl related constructors just propagate TensorTypeId to a parent constructor. These are pretty simple to adjust.
* Backend extensions are now in the business of explicitly constructing a TensorTypeSet and then passing it in. This is probably OK for now but when Variable drops, these dispatch IDs may get immediately overwritten to have Variable set.
* `sparseTensorSetToDeviceType` and similar functions previously did an equality test with TensorTypeId, to determine what an appropriate device type is. This equality is now replaced with a set inclusion test. This is valid, under the assumption that we don't ever have weird sets like "this tensor is simultaneously a sparse CPU tensor and a sparse CUDA tensor", which will be true in the short term plan of adding Variable to the dispatch ID.
* `impl::dispatchTypeId` was generally introduced for cases where we legitimately need to convert from `TensorTypeSet -> TensorTypeId` in a dispatch related manner. At the moment, the implementation is trivial, but they will soon be adjusted to handle TLS. I've tried to make these call sites as forwards compatible as possible:
* `checked_tensor_unwrap` and co now use `dispatchTypeId`. When Variable is added to the type set, these will always be called in a context where the Variable type ID is disabled, so we will get the correct underlying tensor type ID.
* Uses of `Backend` in dispatch are now replaced with `TensorTypeSet`. The general heuristic here for whether or not to accept a `TensorTypeId` or `TensorTypeSet` is that we want to make the generated code as simple as possible. It is easier to retrieve a `TensorTypeSet`, so that's a more appropriate API in these cases.
* In some cases, I could not conveniently switch an implementation to the new semantics, because it was blocked on some other refactor. In this case, I introduced `legacyExtractTypeId`, which gives what would be a BC-compatible `TensorTypeSet` to `TensorTypeId` implementation that will continue to report the same values it would have prior to this change. This is **different** from `dispatchTypeId`, because this function does NOT respect TLS; it always ignores Variable type IDs.
* c10 dispatcher tests, which are oblivious to Variable dispatch, use this BC function (actually, they use `extractTypeId`, an overload for Tensor.
* The implementation of `new_*` methods heavily relies on tensor type ID, I chose not to unwind this. PR to refactor this at https://github.com/pytorch/pytorch/pull/25475
* Slicing also relies on tensor type ID, see `torch/csrc/autograd/python_variable_indexing.cpp` (though in some cases in this file, I was able to replace use of tensor type ID with TensorOptions)
* In some cases, there is an equality test on tensor type ID which would be better done by testing "tensor axes". In those cases, I replaced those equality tests with more equality tests.
* Example: `torch/csrc/nn/type_checks.h`
* There is a total punt in `torch/csrc/tensor/python_tensor.cpp` where "instance of" checking is done via dispatch ids. In general, the Variable-ness of a tensor doesn't participate in instanceof testing. It's not entirely clear what to do here.
* Instead of storing `Backend` in `VariableInfo`, we now just store Layout.
c10 dispatcher test updates were done with:
```
:%s/\([^ ]\+\)\.type_id()/extractTypeId(\1)/g
:%s/\([^( ]\+\)->type_id()/extractTypeId(*\1)/g
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25308
Differential Revision: D17092791
Test Plan: sandcastle and ossci
Reviewed By: bwasti
Pulled By: ezyang
fbshipit-source-id: 22207d14fe62dd31ee19cc5011af22e3d9aabb5b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24914
There are two helpers, Tensor::names(), and Tensor::opt_names().
- Tensor::names() always returns a DimnameList; if the tensor doesn't have
names, it returns a DimnameList of all `None` names.
- Tensor::opt_names() returns an optional<DimnameList>: it returns
names if the tensor has names allocated, otherwise, nullopt.
Tensor::opt_names() is more of an implementation detail. It is
recommended that devs use Tensor::has_names() and Tensor::names()
because those result in a cleaner API.
This PR also cleans up callsites of Tensor::opt_names() to use
Tensor::names() where applicable.
Finally, this PR also adds impl::get_names(TensorImpl*), which is the
analogous function for TensorImpl*. (Tensor::opt_names() <->
impl::get_opt_names(TensorImpl*)).
Test Plan: - run existing tests. [namedtensor ci]
Differential Revision: D16919767
Pulled By: zou3519
fbshipit-source-id: ef30c9427a3d8e978d2e6d01c7f74f5174ccd52c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24907
This better reflects the semantics because Tensor::opt_names() returns
an `optional<DimnameList>`, not just a DimnameList.
Also rename `impl::get_names` to `impl::get_opt_names` (that is the
`TensorImpl*` variant of `Tensor::opt_names()`.
Test Plan
- run existing tests [namedtensor ci]
gh-metadata: pytorch pytorch 24907 gh/zou3519/110/head
Test Plan: Imported from OSS
Differential Revision: D16919768
Pulled By: zou3519
fbshipit-source-id: 094d404576b3f4b39629d0204e51c6ef48ee006e