Commit Graph

94 Commits

Author SHA1 Message Date
35f36363ec Revert "[dtensor] move DTensor to public namespace (#133113)"
This reverts commit 2ee6b97464d17fcf4c1fc67c29868fa30d0c16e1.

Reverted https://github.com/pytorch/pytorch/pull/133113 on behalf of https://github.com/wanchaol due to looks like it break some internal type imports ([comment](https://github.com/pytorch/pytorch/pull/133113#issuecomment-2295670911))
2024-08-19 05:00:19 +00:00
2ee6b97464 [dtensor] move DTensor to public namespace (#133113)
Moving DTensor to be in the public namespace, to formally add the
documentation page that includes all the public APIs. This includes:

* many path renames and path import fixes
* a dedicated doc page without too much content yet (adding in the next
  PRs)
* To preserve the BC for users still using the `torch.distributed._tensor`,
  I added a shim script to redirect old path calls to the new module

The BC preserving is evidented by the fact that all DTensor tests are still
working without changing the public imports. So it's safe to land the
changes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133113
Approved by: https://github.com/XilunWu
ghstack dependencies: #133305, #133306
2024-08-17 05:09:52 +00:00
1a4709cef5 [dtensor] add more documentations (#133306)
This PR adds more documentations to the DTensor APIs, to prepare for the
module be public

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133306
Approved by: https://github.com/XilunWu, https://github.com/tianyu-l, https://github.com/wz337
ghstack dependencies: #133305
2024-08-17 05:09:52 +00:00
9f17037e8b [dtensor] move tensor constructors to the api module (#133129)
This is to ensure __init__.py only contain public APIs

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133129
Approved by: https://github.com/awgu, https://github.com/tianyu-l
2024-08-13 06:09:56 +00:00
7f71f2a997 [dtensor] improve docs and comments (#132683)
as titled, fixed typos in various comments and improve the
public documentations

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132683
Approved by: https://github.com/XilunWu
ghstack dependencies: #131210, #132682
2024-08-08 09:24:58 +00:00
92a17f454a [1/N][dtensor] introduce StridedShard placement type and _split_tensor() logic (#126697)
**Summary**
This PR adds a new private placement type `_StridedShard` for FSDP2 + TP style tensor sharding. The previously used `Shard` placement type cannot produce correct `full_tensor()` result because it assumes the tensor to be first sharded over `dp` mesh dimension then `tp` mesh dimension which does not hold true in FSDP2 + TP case.

**Test**
`pytest test/distributed/_tensor/test_utils.py -s -k strided_sharding`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126697
Approved by: https://github.com/wanchaol
2024-08-07 18:17:02 +00:00
5a0068cc69 [BE] mypy: disallow untyped decorators (#131428)
Untyped decorators strip the types from their decorated function so even if the underlying function is fully typed then callers to it don't get any benefit from type annotations.

Step 1 - Enable the error and override in all the offending files.

#131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131428
Approved by: https://github.com/justinchuby, https://github.com/oulgen
2024-07-23 21:50:55 +00:00
a7cfe40c9b [dtensor] Improve from_local API with run_check (#130289)
as titled, this PR:
1. switch `run_check` to be by default False and add extra doc/comments
   about the correctness guarantee. Since I observed so many calls
forget to use run_check=False, we should simply switch to not perform
metadata check and make our documentation explicit
2. Implement metadata check by picking up the changes from https://github.com/pytorch/pytorch/pull/115229
3. Improve the from_local documentation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130289
Approved by: https://github.com/awgu, https://github.com/wz337
ghstack dependencies: #130286, #130287, #130288
2024-07-15 18:52:55 +00:00
0acd09aecd [torchrec][pt-d][model store] introduce LocalShardsWrapper for DTensor (#129150)
Summary:
Same as D57688538, recreated because of GH issues

This diff introduces LocalShardsWrapper which is crucial to migrating from using ShardedTensor to DTensor in TRec state dict representation. As well as any changes needed in PT-D and ModelStore to support this.

It allows us to extend DTensor to support multiple shards on a rank as well as empty shards on a rank as needed by TRec sharding logic.

This diff also extends the support for LocalShardsWrapper to be used in conjunction with DTensor in checkpointing cases (ModelStore and DCP)

See D54375878 for how it is used.

**LocalShardsWrapper supports the following torch ops:**
+ torch.ops._c10d_functional.all_gather_into_tensor.default
+ aten._to_copy.default
+ aten.view.default
+ aten.equal.default
+ aten.detach.default

With extensibility to add more as required by use cases.

See https://docs.google.com/document/d/16Ptl50mGFJW2cljdF2HQ6FwsiA0scwbAbjx_4dhabJw/edit?usp=drivesdk for more info regarding design and approach.

NOTE: This version of LocalShardsWrapper does not support empty shards, that is added in the next diff enabling CW. D57063512

Test Plan:
` buck test mode/opt -c python.package_style=inplace aiplatform/modelstore/client/tests_gpu:dist_checkpoint_save_load_with_stateful_tests -- --print-passing-details`

`buck2 test 'fbcode//mode/dev-nosan' fbcode//torchrec/distributed/tests:test_tensor_configs -- --print-passing-details`

Sandcastle

Reviewed By: XilunWu, wanchaol

Differential Revision: D58570479

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129150
Approved by: https://github.com/XilunWu
2024-06-21 01:58:51 +00:00
cec31050b4 [BE][Easy] enable UFMT for torch/distributed/{tensor,_tensor}/ (#128868)
Part of #123062

- #123062

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128868
Approved by: https://github.com/fegin
2024-06-18 21:49:02 +00:00
a3af32c2fb Add functionality to make ViewAndMutationData (slightly more) cache safe (#127618)
This PR changes the traced_tangents field of ViewAndMutationMeta to be cache safe. Specifically, at runtime, the only time we need the fw_metadata's traced_tangent's field is for Tensor subclass metadata from __tensor_flatten__. So instead of storing an entire FakeTensor, which has many fields that can be unserializable, only store the result of __tensor_flatten__() on any FakeTensors representing subclasses.

That said, there's no guarantee that `__tensor_flatten__` is actually serializable: if we fail to pickle the result of __tensor_flatten__ we won't save to the cache.

To do this, we also make a small change to `__coerce_same_metadata_as_tangent__`, so that it takes in the return value of tensor_flatten() instead of an entire FakeTensor. Let me know if we should change the name of the function.

By doing this, we can now run the dynamic shapes cache test with autograd turned on.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127618
Approved by: https://github.com/bdhirsh
2024-06-13 19:45:33 +00:00
3a0d088517 Flip default value for mypy disallow_untyped_defs [5/11] (#127842)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127842
Approved by: https://github.com/oulgen
2024-06-08 18:49:18 +00:00
8a0bc8c9ee [fsdp2] simplify fsdp_param logic with DTensorSpec (#128242)
as titled, we can use a single DTensorSpec to save the SPMD sharding
spec, plus the global shape/stride to simplify the FSDPParam logic

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128242
Approved by: https://github.com/awgu
2024-06-08 05:56:41 +00:00
3df53c2a8f [dtensor] directly return local_tensor under no_grad (#128145)
as titled, skip the autograd function and directly return the
local_tensor if it's under no_grad context, this would avoid creating
views

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128145
Approved by: https://github.com/awgu
ghstack dependencies: #128112
2024-06-07 04:01:47 +00:00
4f87f47ea1 [dtensor] reuse DTensorSpec as much as possible (#128112)
as titled, given that our DTensorSpec is immutable, we can always reuse
the spec if the input/output have the same tensor metadata. this helps two fold:
1. We don't need to re-calculate the hash everytime we produce a
   DTensorSpec, reduce runtime operator overhead
2. reduce the DTensor construction overhead.

Some local benchmark on a 800 parameter clip_grad_norm shows that for
foreach_norm the CPU overhead reduces from 11ms -> 7.8ms (around 30% improvement)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128112
Approved by: https://github.com/awgu
2024-06-06 16:55:50 +00:00
67ef2683d9 [BE] wrap deprecated function/class with typing_extensions.deprecated (#127689)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

Resolves #126888

- #126888

This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127689
Approved by: https://github.com/Skylion007
2024-06-02 12:30:43 +00:00
033e733021 Revert "[BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)"
This reverts commit 749a132fb0a8325cbad4734a563aa459ca611991.

Reverted https://github.com/pytorch/pytorch/pull/126898 on behalf of https://github.com/fbgheith due to switching typing-extensions=4.3.0 to 4.9.0 causes internal failure ([comment](https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456))
2024-05-31 19:47:24 +00:00
b0ef363972 [dtensor] rename _Partial -> Partial for all imports (#127420)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127420
Approved by: https://github.com/awgu
2024-05-29 21:42:40 +00:00
749a132fb0 [BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.

Resolves #126888

- #126888

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
2024-05-29 12:09:27 +00:00
a60b06bd2b [dtensor] update public API docs (#127340)
This PR updates the API documentations for the public facing APIs

needs more example for each API but plan to add them in a separate PR

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127340
Approved by: https://github.com/wz337
ghstack dependencies: #127338, #127339
2024-05-29 05:18:47 +00:00
2c9a420da3 [dtensor] move some modules to private namespace (#127339)
as titled, moving some modules that are mainly for DTensor private usage
to be a private module.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127339
Approved by: https://github.com/awgu
ghstack dependencies: #127338
2024-05-29 05:18:47 +00:00
daf1eb44bc try to fix the warning in distribute_tensor (#125476)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125476
Approved by: https://github.com/albanD, https://github.com/awgu
ghstack dependencies: #125475
2024-05-06 18:59:47 +00:00
084d818e71 Revert "try to fix the warning in distribute_tensor (#125476)"
This reverts commit 2b41e1d6fc05428008875e3cfe8be17184e57491.

Reverted https://github.com/pytorch/pytorch/pull/125476 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but there are real failures on the PR that sneak in during the log classifier outage ([comment](https://github.com/pytorch/pytorch/pull/125476#issuecomment-2094468740))
2024-05-04 22:25:32 +00:00
2b41e1d6fc try to fix the warning in distribute_tensor (#125476)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125476
Approved by: https://github.com/albanD, https://github.com/awgu
ghstack dependencies: #125475
2024-05-04 05:25:13 +00:00
599a2e25f1 Reland "make sure dynamo doesn't inline DTensor __new__ or __torch_dispatch__ (#123347)" (#125288)
Re-land of https://github.com/pytorch/pytorch/pull/123347.

The original PR broke internal because of a circular import due to importing dynamo in the DTensor code. The new version uses `torch._dynamo_disable` to work around

This reverts commit 9d88339b535f57cd0e2926c9ac4c2542e4490aac.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125288
Approved by: https://github.com/ezyang, https://github.com/yanboliang, https://github.com/yoyoyocmu, https://github.com/anijain2305, https://github.com/fegin
ghstack dependencies: #124398, #124399, #124400
2024-05-01 21:56:01 +00:00
9d88339b53 Revert "make sure dynamo doesn't inline DTensor __new__ or __torch_dispatch__ (#123347)"
This reverts commit 63dcb5b0f2ef3578e81841fd8a2166e732c0ca99.

Reverted https://github.com/pytorch/pytorch/pull/123347 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/123347#issuecomment-2059994989))
2024-04-16 22:08:24 +00:00
63dcb5b0f2 make sure dynamo doesn't inline DTensor __new__ or __torch_dispatch__ (#123347)
Fixes https://github.com/pytorch/pytorch/issues/122459, https://github.com/pytorch/torchtrain/issues/61

Even with the previous PR ("support DTensor/subclass constructors directly in the graph"), I still see some errors when running the repro above that start some logs showing that dynamo is inlining `__new__`.

I noticed that putting `@torch._dynamo.disable` on DTensor's `__new__` makes the entire repro pass.

Why does having dynamo try to inline `Subclass.__new__` run into problems? Morally, dynamo probably shouldn't be inlining __new__ ("creating a subclass" is a blackbox operation that AOTAutograd can trace through anyway). But concretely, we can end up with a node in the dynamo FX graph that has a "partially initialized tensor subclass" as its example value, because the subclass has been created but its fields have not been assigned to yet.

This breaks a bunch of invariants throughout dynamo: there are many places where if we have a tensor subclass node, we want to look at its inner tensors, to see if they are FakeTensors, what their FakeTensorMode is, and if they have dynamic shapes.

One option is to decide that "uninitialized subclass" is a first-class thing that anyone looking at the FX node examples values on the dynamo graph needs to handle, but this seems like a lot of work when in reality we don't need dynamo to trace the __new__ at all. Hence the `torch._dynamo.disable`.

I still wasn't very satisfied, since it was unclear to me **why** dynamo was inlining the `__new__` call, instead of interposing on the `DTensor()` constructor directly. After a long chat with @anijain2305, he explained that with code like this:
```
@torch._dynamo.disable(recursive=False)
def f(x):
    out = SubclassConstructor(x)
```

Dynamo will never get the chance to interpose on the subclass constructor. Instead, what will happen is:
(1) Dynamo hands back control to cpython to run `f()`, since we disabled that frame
(2) `SubclassConstructor(x)` is run in eager mode
(3) `SubclassConstructor(x)` eventually calls `SubclassConstructor__new__`
(4) this is a new frame, that cpython then allows dynamo to intercept and start compiling

So it looks like we are basically forced to handle the situation where dynamo might directly start compiling `Subclass.__new__`

All of the above does not explain the story for `__torch_dispatch__` though. Empirically, I have a repro in torchtrain where looking at the dynamo logs, we see dynamo try to inline `__torch_dispatch__`.
```
[rank0]:DEBUG: Skipping frame because no content in function call _prepare_output_fn                     /data/users/hirsheybar/b/pytorch/torch/distributed/tensor/parallel/style.py 318
[rank0]:DEBUG: torchdynamo start compiling __torch_dispatch__ /data/users/hirsheybar/b/pytorch/torch/distributed/_tensor/api.py:297, stack (elided 5 frames):
```

I haven't been able to create a smaller repro of the problem (even using `_dynamo.disable(recursive=False)`), although in theory, if there is a `torch.*` op that you were to inline (where one of the inputs is a subclass), the next frame would likely be `__torch_dispatch__`. Dynamo always treats `torch.*` operations as not-inlinable though, so in theory we shouldn't ever see dynamo inline `__torch_dispatch__`, but a `_dynamo.disable()` fixes the problem.

I asked Animesh if we can have dynamo automatically apply this behavior to subclasses instead of needing it to be added explicitly. He pointed out that for `disable(recursive=False)`, we can't really do this within dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123347
Approved by: https://github.com/zou3519
ghstack dependencies: #122502, #122751, #123348
2024-04-15 17:23:20 +00:00
afee5bea92 [dtensor] refactor schema suggestions in output sharding (#122929)
This PR refactors the schema_suggestions in OuputSharding to be a single
OpSchema instead of list of schemas, which in practice we only have one,
for the multiple resharding case we also moved to OpStrategy so there's
no case that needs it to be a list

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122929
Approved by: https://github.com/tianyu-l
2024-04-01 17:39:39 +00:00
e7fa3f7812 AOTDispatch: allow subclasses to correct when we guess metadata of tangents incorrectly (#118670)
This PR is enough to fix https://github.com/pytorch/pytorch/issues/118600.

More description of the problem is in the issue, but the high-level problem is similar to the "tangents might be non-contiguous" problem that we handle today, via forcing all tangents to be contiguous. There, the problem was something like:

"We guessed the tangent strides incorrectly, because strides on the runtime tangents were different from strides on the forward outputs, which we used to generate tangents"

Here, the problem is similar:

"We guessed the tangent tensor subclass's metadata incorrectly, because the runtime tangent was a subclass with different metadata than the forward output subclass".

This happened in an internal DTensor issue, where the metadata in question was the `placements` (shard vs. replicate vs. Partial).

One option is to solve this problem via backward guards. This is needed to unblock internal though, so I figured handling this similarly to how we handle non-contiguous tangents would be reasonable. I did this by:

(1) Assert that the metadata on subclass tangents is the same as what we guessed, and if not raise a loud error

(2) In the error message, provide the name of an optional method that the subclass must implement to handle this case:

`def __force_same_metadata__(self, metadata_tensor):`: If the forward output had a `Replicate()` placement, but the runtime tangent had a `Shard(1)` placement, this method allows a subclass to take the tangent and "convert" it to one with a `Replicate()` placement.

`__force_standard_metadata__(self)`: One issue is that there is another placement called `_Partial`, and its semantics are such that DTensor is **unable** to convert a DTensor with some placement type into another DTensor with a `_Partial` placement.

`__force_standard_metadata__` is now called on all (fake) subclass forward outs at trace-time to generate tangents, and gives subclasses a chance to "fix" any outputs with metadata that they cannot convert to later. Morally, this is similar to the fact that we force a `contiguous()` call on all tangents at trace-time.

I'm interested in thoughts/feedback! Two new dunder methods on traceable subclasses is definitely a contentious change.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118670
Approved by: https://github.com/ezyang
2024-03-22 23:16:08 +00:00
a26480a4d1 [dtensor] move early return check into redistribute autograd function (#121653)
This PR fixed the bug of redistribute to move early return check into the
redistribute autograd function, so that even though we redistribute the
same placement, the grad_placements from the `to_local` call might be
different, the redistribute backward still need to happen

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121653
Approved by: https://github.com/awgu
2024-03-12 17:37:30 +00:00
242e03ba86 [dtensor] add async_op option to redistribute and some refactor (#121477)
async output option was only available in `full_tensor()` call, but I think it's
generally good to make this option available in the `redistribute` call directly
so that user can control it

This PR adds async_op option to redistribute call, to allow user control
whether to perform tensor redistribution asynchronously or not.

By default we set this to False, this is to follow the semantics of the c10d
collectives.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121477
Approved by: https://github.com/wz337
2024-03-09 06:17:23 +00:00
6791b0c09e Change default torch_function behavior to be disabled when torch_dispatch is defined (take 2) (#120632)
This does not introduce a new test but is tested by checking that all the classes we already have still behave as before now that they don't explicitly disable torch_function.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120632
Approved by: https://github.com/ezyang
2024-03-09 01:08:37 +00:00
bc02fca358 [dtensor] to_local backward grad placement passthrough (#121474)
to_local accepts a `grad_placements` if user choose to pass, previously
we enforce the grad_out to be the "same" placement as the current
DTensor for safety.

But I realized that we DO NOT need to enforce this constraint. Why?
backward placement does not need to be the same as fwd tensor placement, this
is already the case for param vs param.grad (i.e. param can be replicate
and grad can be partial), so we should not restrict this to activation
vs activation grad too

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121474
Approved by: https://github.com/awgu, https://github.com/yoyoyocmu, https://github.com/yifuwang
2024-03-08 23:11:49 +00:00
f7ec984b1b [DTensor][XLA] support XLA backend in distirbute_module API (#121355)
Addresses #92909  cc @mrshenli @pritamdamania87 @zhaojuanmao @satgera @rohan-varma @gqchen @aazzolini @osalpekar @jiayisuse @H-Huang @kwen2501 @awgu @penguinwu @fegin @XilunWu @wanchaol @fduwjj @wz337 @tianyu-l @wconstab @yf225 @chauhang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121355
Approved by: https://github.com/wanchaol
2024-03-08 15:47:33 +00:00
4f9d4e1ab0 [DTensor][XLA] refactor DTensor _xla API (#113214)
In response to the change pytorch/xla#5776 and #92909

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113214
Approved by: https://github.com/wanchaol
2024-03-07 06:18:05 +00:00
2e50566722 [dtensor] change distribute_module input/output_fn to accept module (#120895)
This is a BC breaking change to distribute_module. The underlying rationle
for this change is that sometimes in the input_fn/output_fn, user would want
to access to the current module for some attributes. This might not be
common enough, but in some cases it's worth to access to the module.

An outstanding use case we want to support is float8, if we want to make
float8 works with the TP API, the input_fn/output_fn of TP parallel
styles would need to get access to the module, where the module might
encapsulates `dynamic_linear.emulate` attribute, that is useful for
input/output casting

Since this is needed for fp8 and DTensor still under prototype release,
I feel it's worth the change and it's better we make the change as
early.

Right now making it a soft BC breaking, which means we maintain BC still
but throw deprecation messages.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120895
Approved by: https://github.com/tianyu-l
2024-03-04 07:22:32 +00:00
87fb8b6218 [DTensor] Relaxed to_local requires_grad warning (#118186)
The existing warning in `DTensor.__new__()` checks `if requires_grad != local_tensor.requires_grad:` and warns with:

> To construct DTensor from `torch.Tensor`, it's recommended to use `local_tensor.detach()` and make `requires_grad` consistent.

Calling `local_tensor.detach()` will have the returned `Tensor` have `requires_grad=False`, so the error message refers to the case where `local_tensor.requires_grad is True` but the user passed `requires_grad=False` to `to_local()`.

However, there is the converse case, where `local_tensor.requires_grad is False` but the user passed `requires_grad=True`. In this case, the original `if requires_grad != local_tensor.requires_grad:` check succeeds, and the warning is emitted. However, the warning message does not apply in that case.

This can happen via `_prepare_output_fn` -> `redistribute` -> `Redistribute.forward()`, where `output.requires_grad is False` but it passes `requires_grad=input.requires_grad` which can be `True`.

We should not warn in this case since `Redistribute.forward()` is our own framework code, so I was proposing to relax the warning.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118186
Approved by: https://github.com/XilunWu, https://github.com/wanchaol
ghstack dependencies: #117994
2024-01-25 15:49:32 +00:00
c170fbd309 [dtensor] refactor redistribute and fix uneven sharding redistribution (#115525)
This PR:
- refactors the redistribute implementation logic to make it more
sound, by figuring out the transform informations first and then apply
transformation step by step, we also cache the decisions so that it
could be reuse again
- for uneven sharding, refactor uneven sharding logic, and use a logical
  shape concept for each transform information to fix the uneven sharding
  multi-mesh redistribute bug

fixes https://github.com/pytorch/pytorch/issues/115310

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115525
Approved by: https://github.com/XilunWu
2024-01-22 18:57:44 +00:00
270ed13e87 [DTensor] Make DTensor from_local backward partial() to replicate() pass through (#115967)
Summary:
This change makes the `DTensor.from_local()` placements in backward pass from `Partial()` to `Replicate()` as pass through for following reasons:
1. When we run backward pass of DTensor.from_local, if the target placement is partial() (i.e. from user manual overwrite code instead of torch_dispatch) we keep the grad as replicate. This is because converting the gradients back to `Partial()` is meaningless.
2. The current div logic will lead to wrong numerical value in the above case.

Test Plan:
**CI**:
CI Tests

**Unit test**:
`buck2 test mode/dev-nosan //caffe2/test/distributed/_tensor:redistribute`
- Passed

**With model training**:
```
# We tested the case where input tensor is manually overwrite as Partial() and
# output tensor manually overwrite to Shard() then to local.

# Before the change: numerical value not correct
Forward pass:
    collective: ReduceScatter
backward pass:
    collective: AllGather + div by process group size

# After the change: div is removed as expected.
Forward pass:
    collective: ReduceScatter
Backward pas:
    collective: AllGather
```

Differential Revision: D52175709

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115967
Approved by: https://github.com/wanchaol
2023-12-19 00:16:10 +00:00
23fa9621e4 [DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#115099) (#115193)
Summary:

Rename _device_mesh.py to device_mesh.py, update all callsites, add documentation.
We created stubs for public class and methods in torch.distributed.device_mesh so that torch.distributed.device_mesh can be imported with or without distributed is available().

Original diff reverted: D51629761
Original PR reverted: https://github.com/pytorch/pytorch/pull/115099
Prior to landing, CI signals are all passed. Shipit added the "ci/trunk" label to the PR and DID NOT wait for it and went ahead committing. More context can be found in the reverted PR above.

Test Plan: CI.

Differential Revision: D51861018

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115193
Approved by: https://github.com/fegin
2023-12-08 08:44:32 +00:00
dacf5d6e92 [DTensor] Remove assert to allow tensor sharding dimension < Shard(x).ndim (#115114)
Consolidated by changes made by @yoyoyocmu. https://www.internalfb.com/diff/D51821717
Remove assert to allow tensor dimension < Shard(x).ndim. With the current padding, we do support this already.

Follow up: we will still need to fix the size mismatch and `full_tensor()` hang when tensor is uneven-sharded.
Created issue here: https://github.com/pytorch/pytorch/issues/115310

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115114
Approved by: https://github.com/yoyoyocmu, https://github.com/wanchaol
2023-12-07 21:57:30 +00:00
22704426c3 Expand dynamic dims support for traceable subclasses (#114311)
Continuation of #112185, following the design in this [doc](https://docs.google.com/document/d/1ipSxcTzEMMOAPvxP-YJlD5JBZZmIGgh8Q34ixtOUCRo).

Summary:
* Introduce `SubclassSymbolicPolicy` containing separate dynamic dim / constraint policies for the outer and inner tensors
    * Expand the automatic dynamic algorithm to recurse into inner tensors and produce one of these for a subclass instance
    * Maintain legacy behavior for subclasses by recursively calling `mark_dynamic()` on inner tensors *of the same dim as outer* when `mark_dynamic(outer, ...)` is called
    * Addresses this: 6a86cf00ad/torch/_dynamo/variables/builder.py (L1750)
* Add `outer_size` and `outer_stride` arguments to `__tensor_unflatten__()` so that you can find out what symbols were allocated for the outer size / stride (you are expected to return a tensor that compares equal to the outer symbols)
    * Signatures now:
    ```python
    # attrs is a list of inner tensor attributes on x; inner_tensor = getattr(x, attr)
    # ctx is anything useful for rebuilding the class we want to guard on
    attrs, ctx = x.__tensor_flatten__()
    ...
    # inner_tensors is a dict of {attr -> tensor}
    # ctx is taken unmodified from flattening and (eventually) guarded on
    # outer_size is the expected size of the output; possibly symbolic
    # outer_stride is the expected strides of the output; possibly symbolic
    y = MySubclass.__tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride)

    # at the __tensor_unflatten__() call-site in PT2, we assert y.shape == outer_size and y.stride() == outer_stride
    # the assert simplifies symbols when there are relationships between outer and inner symbols
    ```
    * Size info needed for `NestedTensor` at least, stride info needed for `DTensor` at least
    * Punting on `outer_storage_offset` because storage_offset handling is horribly broken in PT2 right now
* ~~Add new `__tensor_mark_dynamic__()` to allow overriding the behavior of mark_dynamic on a per-subclass basis~~ (booted to future work)
* ~~Add guards for tensor subclasses by calling `__tensor_flatten__()` in the guard to test equality on `ctx`~~
    * Now handled in #114469
* Next PR: add TENSOR_MATCH guards on inner tensors

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114311
Approved by: https://github.com/ezyang, https://github.com/drisspg, https://github.com/voznesenskym, https://github.com/bdhirsh
2023-12-05 21:09:25 +00:00
a827ac71f2 Revert "[DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#115099)"
This reverts commit eaa64339d640ed1d36520ada379213f8361be5ff.
2023-12-05 08:59:36 -08:00
eaa64339d6 [DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#115099)
Summary:
Rename _device_mesh.py to device_mesh.py, update all callsites, adds documentation.

Original diff reverted: D51629761
Original PR reverted: https://github.com/pytorch/pytorch/pull/114991
It was failing because failing a public module binding tests in MacOS, and this is due to the change in import order for torch/distributed/fsdp/_common_utils.py. Since this original import would still work, we remove the changes in this file.

Test Plan: CI.

Differential Revision: D51825114

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115099
Approved by: https://github.com/wanchaol, https://github.com/fegin
2023-12-05 05:44:52 +00:00
3a2e2044cd Revert "[DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#114710) (#114991)"
This reverts commit 729ac7317a50a6a195b324cf6cefd748bf4f5498.

Reverted https://github.com/pytorch/pytorch/pull/114991 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/114991#issuecomment-1837214567))
2023-12-02 17:55:51 +00:00
729ac7317a [DeviceMesh] Rename _device_mesh.py to device_mesh.py to prepare for beta (#114710) (#114991)
Summary:

Same content of changes as https://github.com/pytorch/pytorch/pull/114710

Rename _device_mesh.py to device_mesh.py, update all callsites, adds documentation.
ghstack-source-id: 208980207
exported-using-ghexport

Test Plan: CI.

Reviewed By: wanchaol

Differential Revision: D51629761

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114991
Approved by: https://github.com/wanchaol, https://github.com/fduwjj, https://github.com/fegin
2023-12-02 04:39:41 +00:00
c39c69953f [DTensor] Used new placements for neg dim in distribute_tensor (#113930)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113930
Approved by: https://github.com/wanchaol
ghstack dependencies: #113919, #113924, #114134, #113925
2023-11-20 22:32:58 +00:00
e2095a04ae [DTensor] Ensured grad_placements was tuple (#113925)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113925
Approved by: https://github.com/wanchaol
ghstack dependencies: #113919, #113924, #114134
2023-11-20 22:32:58 +00:00
f4ffd46c08 [DTensor] Used new placements for neg dim in from_local (#114134)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114134
Approved by: https://github.com/wanchaol
ghstack dependencies: #113919, #113924
2023-11-20 22:32:51 +00:00
b41ad7d695 [DTensor] Used new placements for neg dim in redistribute (#113924)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113924
Approved by: https://github.com/wanchaol
ghstack dependencies: #113919
2023-11-20 22:30:16 +00:00