Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35061
Main points of the new API:
- You can register implementations (impl) without having to specify a schema.
- Registrations are commutative, so no matter what order your static
initializers run, you end up with the same end result.
op_registration_test.cpp contains a reasonably comprehensive accounting
for the available API surface
How does this implementation proceed? The basic concept is to relax the
internal invariants of Dispatcher data structures to allow the
possibility that a FunctionSchema is not specified in an Operator.
- DispatchKeyExtractor has an uninitialized state where it doesn't look
for dispatch keys in any arguments of the stack. It can have a
schema (de)registered to itself post facto with
registerSchema/unregisterSchema.
- DispatchTable has a new constructor taking only an OperatorName for
the uninitialized state. It can have a schema (de)registered to itself
post facto with registerSchema/unregisterSchema
- OperatorDef maintains counts of both defs and well as defs_and_impls.
defs_and_impls keeps track of the outstanding impl registrations; you
may have impl registrations but no defs. If there are no defs (no
schema), the operator is not returned by findSchema. A new
findOperatorByName fucntion unconditionally returns the OperatorHandle
even if there's no schema. OperatorHandle::hasSchema can be used
to check if the operator has schema.
- Replaced 'registerKernel' with 'registerImpl', which is the new
interface for directly registering kernels without implementations.
- Because 'registerImpl' no longer requires an OperatorHandle, change
'registerDef' to only return a RegistrationHandleRAII. This is marginally
less efficient (since we're doing two hash table lookups on a registration
now), but this won't matter in the long term, and probably doesn't
matter now either.
- Rename registerBackendFallbackKernel to registerFallback (this exposed
a bunch of places where we're improperly directly interfacing with Dispatcher;
we need to add this capability to the true public API)
- All code generated internal registrations are switched to use the new
API. This includes VariableType registrations (which previously
weren't converted) and the mobile autograd stuff
- Switch the new-style def()/impl() APIs to interact directly with Dispatcher,
rather than indirecting through the old API
- We deleted alias analysis kind merging entirely. As a nod to BC, it's
possible to define a full schema with alias analysis kind, and then
later do another full schema def with missing alias analysis kind, but
the opposite direction is not allowed. We can remove this entirely
following the plan at https://github.com/pytorch/pytorch/issues/35040
- Schema matching is moved inside the dispatcher, because we might not
be able to immediately schema match at the point of an impl() (because
we don't have the schema yet). To do this, we store the inferred
function schema inside a KernelEntry, so we can check it when we get
the real schema.
- Registered kernel functions now store a debug string which
can be used to more easily identify them. There's some best
effort stuff based on __FUNCSIG__ but this is only really
capable of reporting types and not function symbols. Tests
use this to distinguish between multiple distinct registrations.
Because we need our static initializers to work no matter what order
they're run, the testing strategy on this PR is quite involved.
The general concept:
- Bind a (very gimped) version of the dispatcher API from Python,
so that we can easily write a more complex testing harness
using expect tests.
- For series of registrations we want to test, exhaustively
test every possible permutation of registrations (and
deregistrations), and show that the intermediate states
agree no matter what path is taken.
- Intermediate states are rendered using a new dumpState()
debugging method that prints the internal state of the
dispatcher. This method may be generally useful for people
who want to see what's in the dispatcher.
- Simultaneously, add a new invariant testing function which
checks that the internal invariants of the dispatcher are
upheld (so we don't have to print internal implementation
details of the dispatcher)
The testing framework found a few bugs in development. For example,
here is a case where we registered schema too early, before checking
if it was valid:
```
Traceback (most recent call last):
File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch
], raises=True)
File "test/test_dispatch.py", line 135, in commute
results=results, raises=raises)
File "test/test_dispatch.py", line 83, in run_permutation
.format(ctor_order[:i], op_ix))
File "test/test_dispatch.py", line 59, in check_invariants
.format(expected_provenance, actual_provenance)
AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n'
name: test::foo
- schema: (none)
+ schema: test::foo(Tensor x, Tensor y) -> (Tensor)
catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0)
: expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!)
```
There are also C++ smoketests for the API. These tests comprehensively
cover the C++ API surface of the new operator registration API, but
don't check very hard if the API does the right thing (that's what
test_dispatch.py is for)
Some miscellaneous changes which could have been split into other
PRs, but I was too lazy to do so:
- Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName)
- Add cloneWithName functionality to FunctionSchema
- Unconditionally generate schema registration, even when type_method_dispatch
is a dict. The one exception is for manual registrations....
- Add fallback, CppFunction::makeFallthrough and
CppFunction::makeFromBoxedFunction to public API of op_registration, so we can
stop calling internal registerImpl directly
- Add new syntax sugar dispatch_autograd for registering autograd kernels
- Minor OperatorName cleanup, storing OperatorName in DispatchTable
and defining operator<< on OperatorName
- Refactored the op registration API to take FunctionSchema directly.
We now do namespacing by post facto fixing up the OperatorName
embedded in FunctionSchema. This also means that you can
now do torch::import("ns1").def("ns2::blah") and have the ns2
override ns1 (although maybe this is not the correct behavior.)
- New torch::schema public API, for attaching alias analysis kind
annotation kinds. This meant we had to template up some function
signatures which previously took const char*. There's now a nice
comment explaining this strategy.
- torch::import now takes std::string which means we can use
the namespacing from Python
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D20680520
Pulled By: ezyang
fbshipit-source-id: 5d39a28e4ec7c73fe4b1fb2222e865ab65e188f5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33636
Fixes https://github.com/pytorch/pytorch/issues/32119, https://github.com/pytorch/pytorch/issues/26116,
https://github.com/pytorch/pytorch/issues/33072
Makes RRef control messages idempotent and enables sending with retries for distributed autograd cleanup and RRef internal messages.
In order to effectively test whether these RRef and distributed autograd cleanup work with network failures/retries, I implemented an RPC Agent with a faulty send function, and enabled running tests using this as a third backend (in addition to Thrift and PGA). The tests using this backend are in a separate class (the test cases are similar but with minor changes to ensure short-running tests wait for retried RPCs to finish).
This faulty RPC Agent is pretty configurable. The tests can configure which messages types to fail, and how many messages to fail, but going forward, other RPC functionality can be overriden with faulty methods to test with failures injected.
Differential Revision: D20019236
fbshipit-source-id: 540a977e96b2e29aa0393ff12621fa293fe92b48
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34047
This PR integrates the added xnnpack conv2d and linear op via
custom class registration for packed weights. The packed struct
is serializable.
Test Plan:
python test test/test_xnnpack_integration.py
Imported from OSS
Differential Revision: D20185657
fbshipit-source-id: fc7e692d8f913e493b293b02d92f4e78536d7698
Summary:
Closes https://github.com/pytorch/pytorch/issues/30027
The idea here is that you can bind a function with `pybind11` in a single line and without modifying the function:
```cpp
m.def("foo", foo, py::call_guard<torch::PyWarningHandler>());
```
Where warnings are handled by the [`call_guard`](https://pybind11.readthedocs.io/en/stable/advanced/functions.html#call-guard) and exceptions are handled by the `pybind11` exception translator. To do this, I have added support for handling C++ exceptions in `torch::PyWarningHandler`'s destructor without setting the python error state before hand.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30588
Differential Revision: D19905626
Pulled By: albanD
fbshipit-source-id: 90c0a5e298b123cc0c8ab9c52c91be4e96ea47c6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29986
Previously in addition to generating a python binding for each op,
we would generate an almost-trivial helper for each overload.
This PR eliminates the helpers, simplifying codegen logic a bit and
reducing the source-level indirection by a step.
Perf should be unchanged.
codegen diff: 1f2f07fb60
Note: in the interests of keeping the diff contained, there's only
some light cleanup here beyond what's necessary for the codegen changes.
Plan is to do some more substantial refactoring in followup PRs that
leave generated code unchanged.
Test Plan: Imported from OSS
Differential Revision: D18567980
Pulled By: bhosmer
fbshipit-source-id: eb9a81babb4489abd470842757af45580d4c9906
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31117
After this diff, we will have completely removed the named tensor
feature flagging. This means that named tensors are always on and that
there is no mechanism to turn them off. There should be no more follow-up
diffs.
I performed the deletion of the header with
```
find . -type f -print0 | xargs -0 sed -i '/#include
<ATen\/core\/EnableNamedTensor.h>/d'
```
Test Plan: - wait for CI
Differential Revision: D18934952
Pulled By: zou3519
fbshipit-source-id: 253d059074b910fef15bdf885ebf71e0edf5bea5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31116
Changelist:
- remove BUILD_NAMEDTENSOR macro
- remove torch._C._BUILD_NAMEDTENSOR
- remove all python behavior that relies on torch._C._BUILD_NAMEDTENSOR
Future:
- In the next diff, I will remove all usages of
ATen/core/EnableNamedTensor.h since that header doesn't do anything
anymore
- After that, we'll be done with the BUILD_NAMEDTENSOR removal.
Test Plan: - run CI
Differential Revision: D18934951
Pulled By: zou3519
fbshipit-source-id: 0a0df0f1f0470d0a01c495579333a2835aac9f5d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30894
This PR begins the process of removing BUILD_NAMEDTENSOR macros. There
will be followups.
Reasons for removing the macros:
- BUILD_NAMEDTENSOR is always on and has been on since pytorch 1.3.0.
- Since we don't test building without it, it is useless to keep around.
- Code becomes nicer to read without the macros
Reasons for not removing the macros:
- potential for feature flagging
Now, I argue against needing to feature flag. The main reason why we
might want to feature flag is if we need to disable the feature.
We'd need a fast switch to disable the feature if someone discovers
in the future that named tensors caused some regression in some existing workflows.
In https://github.com/pytorch/pytorch/pull/25798, I did a variety of
macro- and micro- benchmarks to determine the performance impact of named
tensors on regular tensors.
[The
microbenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-529014810)
were not very stable, and running the
microbenchmarks for more iterations doesn't actually help because the
noise is not distributed in a nice way. Instead of microbenchmarks I ran
a [profiler
(perf)](https://github.com/pytorch/pytorch/pull/25798#issuecomment-555707645)
to estimate how much overhead named tensors add to unnamed code. I
estimated the overhead to be less than 100ns for `add` and even smaller
for `mm`; there are ways to optimize even futher if we find this to be a
problem.
[Initial
macrobenchmarks](https://github.com/pytorch/pytorch/pull/25798#issuecomment-530539104)
were also not very stable. I ran imagenet for some number of epochs. To
make them more stable, I got rid of the data loading (which seemed to
vary between runs). [In some benchmarkers without data
loading](https://github.com/pytorch/pytorch/pull/25798#issuecomment-562214053),
we can see that the results are less noisy now. These results support
no noticeable regressions in speed.
Test Plan: - wait for CI
Differential Revision: D18858543
Pulled By: zou3519
fbshipit-source-id: 08bf3853a9f506c6b084808dc9ddd1e835f48c13
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29213
A trivial use of make_variable is one where requires_grad=False. This
transformation is not technically semantics preserving, as make_variable
will create a shallow copy of the tensor in question; however, I
am guessing that we have the invariant that we don't actually make
use of this shallow copy in a nontrivial way.
There were some cases where the surrounding code expected a Variable proper
to be returned; I retained those sites.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Differential Revision: D18353503
Pulled By: ezyang
fbshipit-source-id: 57fe34d82e009c0cc852266fb0b79d6d9c62bb03
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26620
This change updates torch.backend.quantized.engine to accept string ("fbgemm"/"qnnpack"/"none" for now).
set_qengine and get_qengine return an int which represents the at::QEngine enum
Test Plan:
python test/test_torch.py
Imported from OSS
Differential Revision: D17533582
fbshipit-source-id: 5103263d0d59ff37d43dec27243cb76ba8ba633f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26135
This change adds the support to call QNNPACK using the refactored API for Linear operators (Fully Connected)
It also has certain cmake changes to enable builing and using pytorch_qnnpack inside aten
I have disabled USE_QNNPACK in CMakeLists.txt. Enabling it results in picking kernels from third_party/QNNPACK during runtime since the function names are the same.
Test Plan:
python test/test_quantized.py TestQNNPackOps.test_qlinear_qnnpack
Imported from OSS
Differential Revision: D17434885
fbshipit-source-id: 084698026938f4529f61d12e86dfe82534ec73dd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26060
This PR enables BUILD_NAMEDTENSOR by default. This is done via including
a header, `c10/core/EnableNamedTensor`, that sets `BUILD_NAMEDTENSOR`.
In the future, the plan is to get rid of the flag entirely: we can
incrementally delete usages after this PR goes in.
This PR also maintains the namedtensor ci vs regular ci distinction.
`test/test_namedtensor.py` only runs if TEST_NAMEDTENSOR=1 is specified.
TEST_NAMEDTENSOR=1 is set on the namedtensor ci. I'll remove this
distinction later and send out an announcement about it; devs will be
responsible for named tensor failures after that.
The initial reason why we had the BUILD_NAMEDTENSOR flag was so that we
could quickly prototype named tensor features without worrying about
adding overhead to the framework. The overheads can be categorized as
memory overhead and performance overhead.
Memory overhead: named tensors adds 1 additional word per Tensor. This
is because TensorImpl stores a `unique_ptr<NamedTensorMetaInterface>`
field. This is not a lot of overhead.
Performance overhead: At all entry points to name inference, we check
if inputs to an op are named. If inputs are not named, we short-circuit
and don't do name inference. These calls should therefore be as
efficient as error-checking code and not take up a lot of time.
My plan is to benchmark a few functions and then post the results in a
comment to this PR.
Test Plan: - [namedtensor ci]
Differential Revision: D17331635
Pulled By: zou3519
fbshipit-source-id: deed901347448ae2c26066c1fa432e3dc0cadb92
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25680
Add a runtime flag to choose between FBGEMM and QNNPACK when compiled with both.
The flag can be set by using torch.backends.quantized.engine = torch.fbgemm/torch.qnnpack or ctx::setPreferredQuantizedEngine(at::QEngine)
ghstack-source-id: 89935643
Test Plan: Verified torch.backends.quantized.engine works
Differential Revision: D17198233
fbshipit-source-id: e5449d06f4136385e0e6d18bd4237f8654a61672
Summary:
This PR is about add torch.backends.mkldnn.enabled flag said in https://github.com/pytorch/pytorch/issues/25186 which can be used disable mkldnn at runtime step as torch.backends.cudnn.enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25459
Differential Revision: D17258926
Pulled By: ezyang
fbshipit-source-id: e179ad364cc608fdaa7d0f37e2e762ceb5eda598
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25352
It doesn't appear to be necessary anymore; assuming this works I'll kill the codegen in a follow-up PR.
Test Plan: Imported from OSS
Differential Revision: D17101573
Pulled By: gchanan
fbshipit-source-id: bd3d1724ee5c659185a161b1e291e30af52f0a8a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24875
As per https://github.com/pytorch/pytorch/issues/23110, each autograd pass
would be assigned a unique autograd_context_id. In this change we introduce a
DistAutogradContainer per worker which holds information for each autograd pass
currently running.
DistAutogradContainer has a map from the autograd_context_id to
DistAutogradContext (which holds all the relevant information for the autograd
pass). DistAutogradContext currently only stores the autograd_context_id and
more information would be added to it later as we build out the rest of the
framework.
The autograd_context_id is a 64 bit globally unique integer where the first 16
bits are the worker_id and next 48 bits are auto-incrementing for uniqueness.
Sample python code on how this would be used for distributed autograd:
```
import torch.distributed.autograd as dist_autograd
worker_id = 0
dist_autograd.init(worker_id)
with dist_autograd.context() as context_id:
# forward pass...
# backward pass...
# optimizer step...
```
ghstack-source-id: 89119248
Test Plan: unit tests.
Differential Revision: D16356694
fbshipit-source-id: d1a8678da0c2af611758dbb5d624d554212330ce
Summary:
https://github.com/pytorch/pytorch/pull/23228 caused build failure on OSX, because rpc.h is included as long as USE_DISTRIBUTED=1, but rpc/init.cpp (and others) is only included when NOT APPLE. So, it cannot find python_functions defined in init.cpp on MacOS. This PR attempt to fix it by wrapping rpc.h with USE_C10D, which is only set when NOT APPLE.
I tried this fix locally and it works.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23998
Differential Revision: D16706087
Pulled By: mrshenli
fbshipit-source-id: d04fe6717a181a3198289cdef51439708c2e291d
Summary:
Features:
* sync and async RPC for builtin operators
* RpcAgent API
* ProcessGroupAgent implementation
Goal:
* have a minimum working and testable RPC implementation
* make sure the RpcAgent API is sufficient for future ThriftAgent and TensorPipeAgent implementation
* For tensor pipe implementation, it might allocate multiple underlying communication channels with different types, and might also use streaming serialization/deserialization for large tensors. To support this requirement, the current implementation only convert a BuiltinOp into a Message which contains a byte vector and a tensor table. It is up to the RpcAgent implementation to determine how it would like to serialize a Message object.
* For ThriftAgent, as Thrift has it own request/response matching solution, the Message.id is no longer necessary. Hence the id can be dropped during serialization. All it needs to do is to pass the response Message object to the Future returned by send(...).
* support blocking and non-blocking RequestCallback
* blocking means the callback won't return before sending out the response
* non-blocking can be achieved by enqueue the `(from, request, RpcAgent&)` tuple and use a different thread to process them. That is why there is an `RpcAgent&` arg in the param list.
We are not exporting this diff until we finalize distributed autograd design and publish the API review publicly.
https://fb.quip.com/FabTAZKVgQpf
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23228
ghstack-source-id: 87816717
Reviewed By: zhaojuanmao
Differential Revision: D15194693
fbshipit-source-id: 7adb600796613cde6073db6c227451b89940ecaf
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23623
This is a quick, not-user-facing check for if pytorch was built with BUILD_NAMEDTENSOR=1.
Test Plan:
- run tests [namedtensor ci]
gh-metadata: pytorch pytorch 23623 gh/zou3519/85/head
Differential Revision: D16621829
Pulled By: zou3519
fbshipit-source-id: d7e1161dc176bab2c1f953265722daeba1e63102
Summary:
we used to not print device when it's on xla. It's sometimes confusing as it looks the same as cpu tensor...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22094
Differential Revision: D15975405
Pulled By: ailzhang
fbshipit-source-id: f19ceb9e26f5f2f6e7d659de12716f0dfe065f42
Summary:
This is useful for measuring inference performance of your
models. This is a very basic benchmark for now. We don't support
batching on the benchmark side, no inter and intra op parallelizm is
supported yet, just caller based parallelizm.
Main phylosophy here is that user should be able to provide inputs
from python and just stack them within the benchmark. API should be
exactly the same as passing inputs to module.forward.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20766
Test Plan: Added a new unit test
Differential Revision: D15435461
Pulled By: salexspb
fbshipit-source-id: db08829dc3f4398bb1d8aa16cc4a58b6c72f16c6
Summary:
Resubmit #20698 which got messed up.
Idea is that when PyTorch is used in a custom build environment (e.g. Facebook), it's useful to track usage of various APIs centrally. This PR introduces a simple very lightweight mechanism to do so - only first invocation of a trigger point would be logged. This is significantly more lightweight than #18235 and thus we can allow to put logging in e.g. TensorImpl.
Also adds an initial list of trigger points. Trigger points are added in such a way that no static initialization triggers them, i.e. just linking with libtorch.so will not cause any logging. Further suggestions of what to log are welcomed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20745
Differential Revision: D15429196
Pulled By: dzhulgakov
fbshipit-source-id: a5e41a709a65b7ebccc6b95f93854e583cf20aca
Summary:
As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR:
1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class
2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()`
3. Remove `Variable.data()` API
3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history.
After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't.
**Note that this PR is BC-breaking in the following use cases:**
**Use Case 1:**
Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type.
**Use Case 2:**
If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example:
```python
params = torch.tensor([1.5, 1.5]).requires_grad_()
with torch.no_grad():
# Change gradient to a sparse tensor
params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]))
grad_saved = params.grad
params.backward(torch.tensor([1.5, 1.5]))
assert id(grad_saved) == id(params.grad) # This will fail after this PR
```
The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072
Differential Revision: D14075257
Pulled By: yf225
fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
Summary:
#19975 was separated by 2 PRs.
This one:
Introduce MemoryFormat argument to the `x.is_contiguous(memory_format=torch.channels_last)` and to the `y = x.contiguous(memory_format=torch.channels_last)` functions.
At this moment both functions just operate with strides and doesn't store any tensor state.
(Original RFC #19092)
-----
Expands functionality of two tensor functions `.is_contiguous` and `.contiguous` (both python and c++ api).
Note: We had several complaints about `.to(memory_format)` function, and decided not to support it.
1. `.contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- Using `torch.contiguous_format` will preserve existing `.contiguous()` behavior.
- Calling `x.contiguous(memory_format=torch.channels_last)` returns new tensor which maintain same semantical layout (NCHW), but have different memory allocation pattern.
`x.contiguous(memory_format=torch.channels_last)` expects input tensor to be 3d, 4d or 5d; and fails otherwise.
2. `.is_contiguous` now support optional keyword-only argument - `memory_format`, which can be either `torch.contiguous_format` or `torch.channels_last`.
- `x.is_contiguous(memory_format=torch.contiguous_format)` preserves same functionality as `x.is_contiguous()` and remains unchanged.
- `x.is_contiguous(memory_format=torch.channels_last)` returns true if A) input tensor is contiguous in memory AND B) allocated in the memory in NWHC (or similar for 3d,5d) format.
Note: By the end of the phase one `x.is_contiguous(memory_format=torch.channels_last)` will calculate state of the Tensor on every call. This functionality going to be updated later.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20455
Differential Revision: D15341577
Pulled By: VitalyFedyunin
fbshipit-source-id: bbb6b4159a8a49149110ad321109a3742383185d