Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes:
1. Bump `ruff` from 0.7.4 to 0.8.4
2. Change `%`-formatted strings to f-string
3. Change arguments with the `__`-prefix to positional-only arguments with the `/` separator in function signature.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143753
Approved by: https://github.com/Skylion007
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Changes by apply order:
1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.
`.parent{...}.absolute()` -> `.absolute().parent{...}`
4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)
`.parent.parent.parent.parent` -> `.parents[3]`
5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~
~`.parents[3]` -> `.parents[4 - 1]`~
6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
Adds a ruff lint rule to ban raising raw exceptions. Most of these should at the very least be runtime exception, value errors, type errors or some other errors. There are hundreds of instance of these bad exception types already in the codebase, so I have noqa'd most of them. Hopefully this error code will get commiters to rethink what exception type they should raise when they submit a PR.
I also encourage people to gradually go and fix all the existing noqas that have been added so they can be removed overtime and our exception typing can be improved.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124570
Approved by: https://github.com/ezyang
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)
That were reverted due to the conflict with internal source repo.
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
- Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
- Add missing return statement to `torch._export. deserialize_graph`
- Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
- Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
- Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Unrelated, to bypass CI failures due to the gcc9 dependency update in Ubuntu-18.04:
- Add hack to squash older libstdc++ from conda environment in favor one from OS to `.ci/docker/install_conda.sh`
- Update bazel cuda builds to focal, as with libstdc++-6.0.32 bazel builds loose the ability to catch exceptions (probably because they link with cupti statically, but I could not found where it is done)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
This PR re-lands
- [Typing] Fix PEP 484 Violation (#105022)
- Update mypy to 1.4.1 (#91983)
That were reverted due to the conflict with internal source repo.
Mostly fixes for PEP-484 violation (i.e. when default arg is set to None, but type is not annotated as optional)
Plus few real fixes:
- Add missing `_get_upgraders_entry_map` to `torch/_C/__init__.pyi`
- Add missing return statement to `torch._export. deserialize_graph`
- Fix error message in `torch.ao.ns.fx.weight_utils.get_lstm_mod_weights`
- Add assert it `torch/optim/optimizer.py` that Optional list is not None
TODO (in followup PR):
- Fix erroneous `isinstance` check in `torch/ao/quantization/_pt2e/qat_utils.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105227
Approved by: https://github.com/atalman, https://github.com/albanD, https://github.com/Skylion007
Fix use-dict-literal pylint suggestions by changing `dict()` to `{}`. This PR should do the change for every Python file except test/jit/test_list_dict.py, where I think the intent is to test the constructor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83718
Approved by: https://github.com/albanD
Summary:
Applies new import merging and sorting from µsort v1.0.
When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.
Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.
For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting
Test Plan: S271899
Reviewed By: lisroach
Differential Revision: D36402110
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78973
Approved by: https://github.com/osalpekar
Summary:
This PR greatly simplifies `mypy-strict.ini` by strictly typing everything in `.github` and `tools`, rather than picking and choosing only specific files in those two dirs. It also removes `warn_unused_ignores` from `mypy-strict.ini`, for reasons described in https://github.com/pytorch/pytorch/pull/56402#issuecomment-822743795: basically, that setting makes life more difficult depending on what libraries you have installed locally vs in CI (e.g. `ruamel`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59117
Test Plan:
```
flake8
mypy --config mypy-strict.ini
```
Reviewed By: malfet
Differential Revision: D28765386
Pulled By: samestep
fbshipit-source-id: 3e744e301c7a464f8a2a2428fcdbad534e231f2e
Summary:
This is a followup to https://github.com/pytorch/pytorch/issues/49190. Vaguely speaking, the goals are to make it easy to identify test time regressions introduced by PRs. Eventually the hope is to use this information to edit Dr CI comments, but this particular PR just does the analysis and prints it to stdout, so a followup PR would be needed to edit the actual comments on GitHub.
**Important:** for uninteresting reasons, this PR moves the `print_test_stats.py` file.
- *Before:* `test/print_test_stats.py`
- *After:* `torch/testing/_internal/print_test_stats.py`
Notes on the approach:
- Just getting the mean and stdev for the total job time of the last _N_ commits isn't sufficient, because e.g. if `master` was broken 5 commits ago, then a lot of those job times will be much shorter, breaking the statistics.
- We use the commit history to make better estimates for the mean and stdev of individual test (and suite) times, but only when the test in that historical commit is present and its status matches that of the base commit.
- We list all the tests that were removed or added, or whose status changed (e.g. skipped to not skipped, or vice versa), along with time (estimate) info for that test case and its containing suite.
- We don't list tests whose time changed a lot if their status didn't change, because there's a lot of noise and it's unclear how to do that well without too many false positives.
- We show a human-readable commit graph that indicates exactly how many commits are in the pool of commits that could be causing regressions (e.g. if a PR has multiple commits in it, or if the base commit on `master` doesn't have a report in S3).
- We don't show an overall estimate of whether the PR increased or decreased the total test job time, because it's noisy and it's a bit tricky to aggregate stdevs up from individual tests to the whole job level. This might change in a followup PR.
- Instead, we simply show a summary at the bottom which says how many tests were removed/added/modified (where "modified" means that the status changed), and our best estimates of the mean times (and stdevs) of those changes.
- Importantly, the summary at the bottom is only for the test cases that were already shown in the more verbose diff report, and does not include any information about tests whose status didn't change but whose running time got much longer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50171
Test Plan:
To run the unit tests:
```
$ python test/test_testing.py
$ python test/print_test_stats.py
```
To verify that this works, check the [CircleCI logs](https://app.circleci.com/pipelines/github/pytorch/pytorch/258628/workflows/9cfadc34-e042-485e-b3b3-dc251f160307) for a test job run on this PR; for example:
- pytorch_linux_bionic_py3_6_clang9_test
To test locally, use the following steps.
First run an arbitrary test suite (you need to have some XML reports so that `test/print_test_stats.py` runs, but we'll be ignoring them here via the `--use-json` CLI option):
```
$ DATA_DIR=/tmp
$ ARBITRARY_TEST=testing
$ python test/test_$ARBITRARY_TEST.py --save-xml=$DATA_DIR/test/test_$ARBITRARY_TEST
```
Now choose a commit and a test job (it has to be on `master` since we're going to grab the test time data from S3, and [we only upload test times to S3 on the `master`, `nightly`, and `release` branches](https://github.com/pytorch/pytorch/pull/49645)):
```
$ export CIRCLE_SHA1=c39fb9771d89632c5c3a163d3c00af3bef1bd489
$ export CIRCLE_JOB=pytorch_linux_bionic_py3_6_clang9_test
```
Download the `*.json.bz2` file(s) for that commit/job pair:
```
$ aws s3 cp s3://ossci-metrics/test_time/$CIRCLE_SHA1/$CIRCLE_JOB/ $DATA_DIR/ossci-metrics/test_time/$CIRCLE_SHA1/$CIRCLE_JOB --recursive
```
And feed everything into `test/print_test_stats.py`:
```
$ bzip2 -kdc $DATA_DIR/ossci-metrics/test_time/$CIRCLE_SHA1/$CIRCLE_JOB/*Z.json.bz2 | torch/testing/_internal/print_test_stats.py --compare-with-s3 --use-json=/dev/stdin $DATA_DIR/test/test_$ARBITRARY_TEST
```
The first part of the output should be the same as before this PR; here is the new part, at the end of the output:
- https://pastebin.com/Jj1svhAn
Reviewed By: malfet, izdeby
Differential Revision: D26317769
Pulled By: samestep
fbshipit-source-id: 1ba06cec0fafac77f9e7341d57079543052d73db
Summary:
This is a followup to https://github.com/pytorch/pytorch/issues/49190. Vaguely speaking, the goals are to make it easy to identify test time regressions introduced by PRs. Eventually the hope is to use this information to edit Dr CI comments, but this particular PR just does the analysis and prints it to stdout, so a followup PR would be needed to edit the actual comments on GitHub.
**Important:** for uninteresting reasons, this PR moves the `print_test_stats.py` file.
- *Before:* `test/print_test_stats.py`
- *After:* `torch/testing/_internal/print_test_stats.py`
Notes on the approach:
- Just getting the mean and stdev for the total job time of the last _N_ commits isn't sufficient, because e.g. if `master` was broken 5 commits ago, then a lot of those job times will be much shorter, breaking the statistics.
- We use the commit history to make better estimates for the mean and stdev of individual test (and suite) times, but only when the test in that historical commit is present and its status matches that of the base commit.
- We list all the tests that were removed or added, or whose status changed (e.g. skipped to not skipped, or vice versa), along with time (estimate) info for that test case and its containing suite.
- We don't list tests whose time changed a lot if their status didn't change, because there's a lot of noise and it's unclear how to do that well without too many false positives.
- We show a human-readable commit graph that indicates exactly how many commits are in the pool of commits that could be causing regressions (e.g. if a PR has multiple commits in it, or if the base commit on `master` doesn't have a report in S3).
- We don't show an overall estimate of whether the PR increased or decreased the total test job time, because it's noisy and it's a bit tricky to aggregate stdevs up from individual tests to the whole job level. This might change in a followup PR.
- Instead, we simply show a summary at the bottom which says how many tests were removed/added/modified (where "modified" means that the status changed), and our best estimates of the mean times (and stdevs) of those changes.
- Importantly, the summary at the bottom is only for the test cases that were already shown in the more verbose diff report, and does not include any information about tests whose status didn't change but whose running time got much longer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50171
Test Plan:
To run the unit tests:
```
$ python test/test_testing.py
$ python test/print_test_stats.py
```
To verify that this works, check the [CircleCI logs](https://app.circleci.com/pipelines/github/pytorch/pytorch/258628/workflows/9cfadc34-e042-485e-b3b3-dc251f160307) for a test job run on this PR; for example:
- pytorch_linux_bionic_py3_6_clang9_test
To test locally, use the following steps.
First run an arbitrary test suite (you need to have some XML reports so that `test/print_test_stats.py` runs, but we'll be ignoring them here via the `--use-json` CLI option):
```
$ DATA_DIR=/tmp
$ ARBITRARY_TEST=testing
$ python test/test_$ARBITRARY_TEST.py --save-xml=$DATA_DIR/test/test_$ARBITRARY_TEST
```
Now choose a commit and a test job (it has to be on `master` since we're going to grab the test time data from S3, and [we only upload test times to S3 on the `master`, `nightly`, and `release` branches](https://github.com/pytorch/pytorch/pull/49645)):
```
$ export CIRCLE_SHA1=c39fb9771d89632c5c3a163d3c00af3bef1bd489
$ export CIRCLE_JOB=pytorch_linux_bionic_py3_6_clang9_test
```
Download the `*.json.bz2` file(s) for that commit/job pair:
```
$ aws s3 cp s3://ossci-metrics/test_time/$CIRCLE_SHA1/$CIRCLE_JOB/ $DATA_DIR/ossci-metrics/test_time/$CIRCLE_SHA1/$CIRCLE_JOB --recursive
```
And feed everything into `test/print_test_stats.py`:
```
$ bzip2 -kdc $DATA_DIR/ossci-metrics/test_time/$CIRCLE_SHA1/$CIRCLE_JOB/*Z.json.bz2 | torch/testing/_internal/print_test_stats.py --compare-with-s3 --use-json=/dev/stdin $DATA_DIR/test/test_$ARBITRARY_TEST
```
The first part of the output should be the same as before this PR; here is the new part, at the end of the output:
- https://pastebin.com/Jj1svhAn
Reviewed By: walterddr
Differential Revision: D26232345
Pulled By: samestep
fbshipit-source-id: b687b1737519d2eed68fbd591a667e4e029de509
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44568
By `lcov`, we can generate beautiful html. It's better than current file report and line report. Therefore in oss gcc, remove `export` code and `file/line level report` code, only use the html report.
But in clang, since such tool is not available, we will still use file-report and line-report generated by ourself.
Test Plan:
Test in docker ubuntu machine.
## Mesurement
1. After running `atest`, it takes about 15 mins to collect code coverage and genrate the report.
```
# gcc code coverage
python oss_coverage.py --run-only=atest
```
## Presentation
**The html result looks like:**
*Top Level:*
{F328330856}
*File Level:*
{F328336709}
Reviewed By: malfet
Differential Revision: D23550784
fbshipit-source-id: 1fff050e7f7d1cc8e86a6a200fd8db04b47f5f3e
Summary: Some tests like `test_dataloader.py` are not able to run under `clang` in oss, because it generates too large intermediate files (~40G) that can't be merged by `llvm`. Skip them when user doesn't specify the `--run-only` option
Test Plan: Test locally. But still, not recomend user to run `clang` coverage in default mode, because it takes too much space.
Reviewed By: malfet
Differential Revision: D23549829
fbshipit-source-id: 0737e6e9dcbe3f38de00580ee6007906e743e52f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43890
1. auto-detect `CXX` default compiler type in oss, and `clang` as default compiler type in fbcode (because auto-detecting will say `gcc` is the default compiler on devserver).
2. change `compiler type` from str `"CLANG" "GCC"` to enum type
3. rename function `get_cov_type` to `detect_compiler_type`
4. auto-set the default pytorch folder for users in oss
Test Plan:
on devserver:
```
buck run :coverage //caffe2/c10:
```
on oss:
```
python oss_coverage.py --run-only=atest
```
Reviewed By: malfet
Differential Revision: D23420034
fbshipit-source-id: c0ea88188578bb1343a286f2090eb8a74cdf3982
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43889
1. rename input argunment `interested-folder` to `interest-only` -- be consistent with `run-only`, `coverage-only` and be shorted
Test Plan: Test on devserver and linux docker.
Reviewed By: malfet
Differential Revision: D23417338
fbshipit-source-id: ce9711e75ca3a1c30801ad6bd1a620f3b06819c5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43883
Check the result of GCC coverage in OSS is reasonable and ready to ship.
The amount of executable lines are not the same between `gcc` and `clang` because of the following reasons:
* Lines following are counted in `clang` but not in `gcc`:
1. empty line or line with only “{” or “}”
3. some comments are counted in clang but not in gcc
5. `#define ...` -- not supported by gcc according to official documentation
* Besides, a statement that explains to more than one line will be counted as only one executable line in gcc, but several lines in clang
## Advantage of `gcc` coverage
1. Much faster
- code coverage tool runtime is onle **4 min** (*ammazzzing!!*) by `gcc`, compared to **3 hours!!** by `clang`, to analyze all the tests' artifacts
2. Use less disk
- `Clang`'s artifacts will take as large as 170G, but `GCC` is 980M
Besides, also update `README.md`.
Test Plan:
Compare the result in OSS `clang` and OSS `gcc` with the same command:
```
python oss_coverage.py --run-only atest test_nn.py --interested-folder=aten
```
----
## GCC
**Summary**
> time: 0:15:45
summary percentage: 44.85%
**Report and Log**
[File Coverage Report](P140825162)
[Line Coverage Report](P140825196)
[Log](P140825385)
------
## CLANG
**Summary**
> time: 0:21:35
summary percentage: 44.08%
**Report and Log**
[File Coverage Report](P140825845)
[Line Coverage Report](P140825923)
[Log](P140825950)
----------
# Run all tests
```
# run all tests and get coverage over Pytorch
python oss_coverage.py
```
**Summary**
> time: 1:27:20. ( time to run tests: 1:23:33)
summary percentage: 56.62%
**Report and Log**
[File Coverage Report](P140837175)
[Log](P140837121)
Reviewed By: malfet
Differential Revision: D23416772
fbshipit-source-id: a6810fa4d8199690f10bd0a4f58a42ab2a22182b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/43800
1. Move fbcode related coverage code to fb/ folder and add TARGETS so that we can use buck run to run the tool and solved the import probelm.
2. Write `README.md` to give users guidance about the tool
Test Plan:
On devserver:
```
buck run //caffe2/fb/code_coverage/tool:coverage -- //caffe2/c10:
```
More examples in README.md
Reviewed By: malfet
Differential Revision: D23404988
fbshipit-source-id: 4942cd0e0fb7bd28a5e884d9835b93f00adb7b92