Summary:
Slightly modified Adam, following the python implementation, and the `ProducesPyTorchValues` tests pass. I had a problem with another test though (see commit c1a6241676ab84fc531c1c3a10f964aa5704092e), it seems that optimizing for two steps with the same optimizer vs optimizing for two steps using freshly initialized objects will produce the same output.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40009
Differential Revision: D22096053
Pulled By: glaringlee
fbshipit-source-id: a31a8f5488cb37c53752ddf15436efabdba67dc4
Summary:
Follow-ups after this PR:
* Remove `LossClosureOptimizer`, and merge `Optimizer` into `OptimizerBase` (and rename the merged class to Optimizer)
* Merge the LBFGS-specific serialize test function and the generic `test_serialize_optimizer` function, possibly by passing a bool `has_only_global_state` flag into the `test_serialize_optimizer` function to denote whether `size()` should be equal to 1 or 2?
* https://github.com/pytorch/pytorch/pull/34564#discussion_r393780303
* It seems that we don't have the equivalent `XORConvergence_LBFGS` test like the other optimizers, and it would be good to add one
* Remove mentions of `parameters_` in optimizer.cpp, de-virtualize all functions, and remove the `OptimizerBase(std::vector<Tensor> parameters)` constructor from `OptimizerBase`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34564
Test Plan: Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D20495701
Pulled By: anjali411
fbshipit-source-id: 6d35286d2decb6f7dff93d9d3e57515770666622
Summary:
In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions.
Note that since we're just talking about typedefs, this change does not break any existing code.
Once this lands I will update stuff in `pytorch/tutorials` too.
zdevito ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523
Differential Revision: D12942787
Pulled By: goldsborough
fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
Summary:
Tensors cannot be created globally because of static initialization order issues. So tensors for the optim_baseline test must be created lazily instead. This is fine because these functions will only be called once (in the respective test).
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12301
Differential Revision: D10201008
Pulled By: goldsborough
fbshipit-source-id: 59a041f437354e7c6600e5655b3e2d0647dbde9e
Summary:
After talking to users of the C++ API we found that having the tensor type be `autograd::Variable` causes more complications than having it be `at::Tensor`. It used to be a problem because `at::Tensor` didn't have the "autograd API" of variable (e.g. `detach()` or `grad()` methods), but those methods are now on `at::Tensor`. As such, we want to make a last big breaking change to have the tensor type be `at::Tensor`, while factory methods like `torch::ones` will return `Variable`s disguised as `at::Tensor`. This will make many things easier, like calling functions in ATen that take vectors of tensors.
This PR makes a small step in this direction by updating the optimizer classes to not use `.data()` on `Variable` to access the underlying `at::Tensor`. Using `.data()` is effectively a hack to work around our modification rules for tensors that require grad. The proper way of doing things is to use `with torch.no_grad` or equivalently `NoGradGuard` in C++ to guard in-place operations.
The next step can then simply redefine `torch::Tensor` to be `at::Tensor`. This transition should be smooth, since all methods available on `Variable` are at this point available on `at::Tensor`.
For this PR I:
1. Modified the implementations of optimizers to not use `.data()`. This means the implementations are now different from PyTorch, which still uses the legacy method of using `.data`.
2. To properly verify (1), I added more fine-grained test cases to our optimizer tests, e.g. `SGD` with and without `weight_decay`, then with `nesterov` etc. Generally more tests = more happy!
3. Minor cleanup of the optimizer codebase
ebetica apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10490
Differential Revision: D9318229
Pulled By: goldsborough
fbshipit-source-id: fb386700f37840542bc5d323f308ea88fe5ea5c5
Summary:
This PR is the final step to making `torch::` the only namespace users of the C++ API ever see. Basically, I did:
``` cpp
namespace torch {
using namespace at;
}
```
And then changed `torch::` to `at::` almost everywhere. This worked surprisingly well out of the box. So users can now write `torch::relu` and `torch::log_softmax` and `torch::conv2d` instead of having to know when to use `at::` and when `torch::`. This is happy!
Another thing I did was to have `using Dtype = at::ScalarType`, which will be the eventual name anyway.
ebetica ezyang apaszke zdevito
Closes https://github.com/pytorch/pytorch/pull/8911
Reviewed By: ezyang
Differential Revision: D8668230
Pulled By: goldsborough
fbshipit-source-id: a72ccb70fca763c396c4b0997d3c4767c8cf4fd3
* Rework optim folder
* Removed TORCH_OPTIMIZER_CLASS macro
* Got rid of CRTP/Impl
* Removed TORCH_AUTOGRAD_KWARG
* Differentiate between Optimizer and LossClosureOptimizer
* Make Optimizers parameters based instead of model based
* Allow construction of optimizer from arbitrary vector
* Added test for zero grad
* Added test for external parameter vectors
* Now comparing against baseline values
* Documentation
* Post rebase fixes
* Different strategy for creating and accessing buffers in optimizers
* Fix member ordering