Prior to this PR, `_inductor/codegen/cpp_prefix.h` was copied into a new temporary directory on every inductor run utilizing the CPP backend (i.e. CPU-only), then included in the output source code. Instead, this PR puts it in an appropriate place in the torch includes, and includes it from there. This allows us to precompile it in cpp_wrapper and AOT inductor mode, saving significant compilation time.
Due to difficulties getting this to work in FBCode, the precompilation itself is only enabled in OSS PyTorch.
Differential Revision: [D69420620](https://our.internmc.facebook.com/intern/diff/D69420620)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144293
Approved by: https://github.com/desertfire
Summary:
This commit fixes a crash in the gemm template lowering caused by hitting an [assert](fd515e4f59/torch/_inductor/codegen/common.py (L1181)) that a buffer was previously removed.
The assert triggers because in the first gemm lowering we use a local accumulation buffer, which causes the original buffer name to be added to the `removed_buffers` set. Then in the next gemm lowering we use the global buffer for accumulation, but that buffer name is already in the `removed_buffers` set.
The fix is to add a unique suffix to the buffer name to avoid triggering the assert from different gemm lowerings.
Differential Revision: D68814625
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146353
Approved by: https://github.com/leslie-fang-intel, https://github.com/frost-intel, https://github.com/hl475
**Summary**
Enable the CPP Grouped GEMM Fusion, lowering and Grouped GEMM Template following the RFC: https://github.com/pytorch/pytorch/issues/144012
- Support flexible number of GEMMs
- Share activation across GEMMs
- The Grouped GEMM Template supports independent activations
- However, the pattern matcher requires an anchor node, which is as the shared activation across GEMMs
- Each GEMM can have a unique weight but same sizes
- Each GEMM can have a unique bias or None
- Current PR does not yet support biases; this will be addressed in a follow-up epilogue fusion PR
- Each GEMM have its own epilogues
- Epilogue fusion is not yet supported in this PR and will be enabled in an upcoming follow-up epilogue fusion PR
**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_cpu_select_algorithm.py -k test_grouped_linear
python -u -m pytest -s -v test/inductor/test_cpu_select_algorithm.py -k test_grouped_linear_invalid
python -u -m pytest -s -v test/inductor/test_cpu_cpp_wrapper.py -k test_grouped_linear
```
**Example**
Here is the example and generated code
```
batch_size = 4
in_features = 512
out_features = 1024
dtype = torch.bfloat16
class M(torch.nn.Module):
def __init__(self, bias):
super().__init__()
self.linear0 = torch.nn.Linear(in_features, out_features, bias=False)
self.linear1 = torch.nn.Linear(in_features, out_features, bias=False)
def forward(self, x):
return self.linear0(x), self.linear1(x)
if __name__ == "__main__":
with torch.no_grad():
input = torch.randn(batch_size, in_features, dtype=dtype)
m = M(bias=bias).to(dtype=dtype).eval()
cm = torch.compile(m)
act_res = cm(input)
```
Generated Code: https://gist.github.com/leslie-fang-intel/ed2e8d23aeb3586eb504feeace692e16#file-grouped-gemm-generated-code-py
**Next Step**
- Support Epilogue fusion
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143796
Approved by: https://github.com/jgong5, https://github.com/jansel
This PR fixes the accuracy issues when template_buffer has users other than the epilogue nodes. This will fix the accuracy failure of the below models using max-autotune:
- MobileBertForMaskedLM
- MobileBertForQuestionAnswering
- convnext_base
- swin_base_patch4_window7_224
## Issue 1:
Previously we always add `template_buffer` as an alias of `Y`. In case the `template_buffer` has users other than the epilogue nodes, we shouldn't set it as an alias of `Y`. This PR adds the check in such case.
Wrong code before the fix where `tmp4` and `tmp9` are both stored to `Y` while we need 2 different buffers for them since `tmp4` will be used by nodes other than the epilogue node:
```cpp
Y[static_cast<long>(n_start + x1 + (32L*m_start) + (32L*x0))] = tmp4; // tmp4 is the output of the template
Y[static_cast<long>(n_start + x1 + (32L*m_start) + (32L*x0))] = tmp9; // tmp9 is the output of the epilogue node
```
Correct code after the fix:
```cpp
out_ptr2[static_cast<long>(n_start + x1 + (32L*m_start) + (32L*x0))] = tmp4;
Y[static_cast<long>(n_start + x1 + (32L*m_start) + (32L*x0))] = tmp9;
```
## Issue 2:
When fixing the above issue, we found that there's correctness issue when `bias` is `False`. The root cause is that in the case where `bias` is `False`, the `template_buffer` has users other than the epilogue nodes and the GEMM output buffer is localized, we need to add an extra copy epilogue to ensure that the GEMM output (a local buffer) is stored to the `template_buffer` that will be used later by other nodes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133073
Approved by: https://github.com/jgong5
ghstack dependencies: #133070
As part of #125683, this PR adds epilogue fusion support for bf16/fp16 gemms. The key changes are as follows:
1. bf16 linear w/ epilogue fusion of some ops was originally supported via ATen oneDNN linear pointwise ops. In order to match the ATen op semantics, in-template epilogue support is added to the cpp gemm template so that we would have: "gemm + in-template epilogues -> template buffer". If the template is chosen for codegen, the in-template epilogues will be concatenated with the out-of-template epilogues that are appended during the scheduling.
2. Support bf16/fp16 legalization for `codegen_loop_bodies` which is used to generate the epilogue loops.
3. We used to leverage the in-place buffer mechanism to handle the in-place buffers in the epilogue codegen, in particular, for the reuses for output buffers of GEMM, template and epilogues. This is not correct since the output buffer is an "output" not an "in-place" buffer of the template kernel itself. Now, we use a dedicated "aliases" dict to manage such buffer reuses and the intermediate aliasing buffers are removed after codegen.
4. Add `localize_buffer` method to `LocalBufferScope` to allow the replacement of a global buffer with a local one in the given inductor IR nodes. This helps the fused loops to work on smaller-sized local buffers for better data locality.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126545
Approved by: https://github.com/jansel
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
As part of #125683, this PR adds epilogue fusion support for bf16/fp16 gemms. The key changes are as follows:
1. bf16 linear w/ epilogue fusion of some ops was originally supported via ATen oneDNN linear pointwise ops. In order to match the ATen op semantics, in-template epilogue support is added to the cpp gemm template so that we would have: "gemm + in-template epilogues -> template buffer". If the template is chosen for codegen, the in-template epilogues will be concatenated with the out-of-template epilogues that are appended during the scheduling.
2. Support bf16/fp16 legalization for `codegen_loop_bodies` which is used to generate the epilogue loops.
3. We used to leverage the in-place buffer mechanism to handle the in-place buffers in the epilogue codegen, in particular, for the reuses for output buffers of GEMM, template and epilogues. This is not correct since the output buffer is an "output" not an "in-place" buffer of the template kernel itself. Now, we use a dedicated "aliases" dict to manage such buffer reuses and the intermediate aliasing buffers are removed after codegen.
4. Add `localize_buffer` method to `LocalBufferScope` to allow the replacement of a global buffer with a local one in the given inductor IR nodes. This helps the fused loops to work on smaller-sized local buffers for better data locality.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126545
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019, #126068
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
As part of #125683, this PR adds epilogue fusion support for bf16/fp16 gemms. The key changes are as follows:
1. bf16 linear w/ epilogue fusion of some ops was originally supported via ATen oneDNN linear pointwise ops. In order to match the ATen op semantics, in-template epilogue support is added to the cpp gemm template so that we would have: "gemm + in-template epilogues -> template buffer". If the template is chosen for codegen, the in-template epilogues will be concatenated with the out-of-template epilogues that are appended during the scheduling.
2. Support bf16/fp16 legalization for `codegen_loop_bodies` which is used to generate the epilogue loops.
3. We used to leverage the in-place buffer mechanism to handle the in-place buffers in the epilogue codegen, in particular, for the reuses for output buffers of GEMM, template and epilogues. This is not correct since the output buffer is an "output" not an "in-place" buffer of the template kernel itself. Now, we use a dedicated "aliases" dict to manage such buffer reuses and the intermediate aliasing buffers are removed after codegen.
4. Add `localize_buffer` method to `LocalBufferScope` to allow the replacement of a global buffer with a local one in the given inductor IR nodes. This helps the fused loops to work on smaller-sized local buffers for better data locality.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126545
Approved by: https://github.com/jansel
ghstack dependencies: #124021, #126019, #126068
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
ghstack dependencies: #124021
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
As part of #125683, this PR adds the epilogue support for c++ gemm template by reusing the c++ vector codegen on sub-slices of tensors. This is implemented by retracing the epilogue IR nodes with new ranges and offsets. The new `codegen_loop_bodies` and `codegen_functions` methods are added to c++ vector codegen for this purpose. This is leveraged by the `store_output` method of the template kernel for epilogue codegen and store to the final result.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126019
Approved by: https://github.com/jansel
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel