Commit Graph

428 Commits

Author SHA1 Message Date
34d424d813 Revert "[dynamo] Support delattr on result of torch.compile(module) (#152741)"
This reverts commit 6c025b5a8270e456405eccc26db1344ddd016d7b.

Reverted https://github.com/pytorch/pytorch/pull/152741 on behalf of https://github.com/huydhn due to Discuss with the author to revert and reland this ([comment](https://github.com/pytorch/pytorch/pull/152740#issuecomment-2863779028))
2025-05-08 17:31:21 +00:00
6c025b5a82 [dynamo] Support delattr on result of torch.compile(module) (#152741)
This is essentially a follow-up on #122098, where we added support of
`getattr` and `setattr` on result of `torch.compile(module)`, but didn't
add support for `delattr`.

Fixes #150711.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152741
Approved by: https://github.com/anijain2305
ghstack dependencies: #152740
2025-05-06 22:30:37 +00:00
0886d402f1 [dynamo] Avoid running torch.nn.Module.__call__ twice under torch.compile(mod) (#152740)
When we do `torch.compile(mod)`, we eventually end up returning a new
module instance, whose `forward` method is the result of
`torch.compile(mod.__call__)`, meaning it already captures all the extra
logic (e.g., hook firing) from the default `torch.nn.Module.__call__`.
As a result we can't reuse the inherited default `__call__` as is,
because we'd end up running the logic twice.

This patch makes the returned `OptimizedModule` override the default
`__call__`, and directly calls into its compiled `forward` method.

Fixes #149502

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152740
Approved by: https://github.com/anijain2305
2025-05-06 22:30:37 +00:00
0b8822e70b [export] set is_exporting() for strict (#151833)
Helpful for upcoming work in figuring when to use stack trace in prettifying dynamic shapes errors

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151833
Approved by: https://github.com/angelayi
2025-05-01 02:00:19 +00:00
a5c61668d7 fix ambiguous error message (#150086)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150086
Approved by: https://github.com/anijain2305
2025-04-16 08:48:05 +00:00
8497491f38 [ez] remove unused arg in _create_wrapped_callback (#151179)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151179
Approved by: https://github.com/anijain2305, https://github.com/Skylion007
ghstack dependencies: #150753, #150754, #150755, #150828
2025-04-14 12:54:23 +00:00
3f0931b1de [ez][dynamo] some code movement (#150753)
`optimize_assert` already does the lookup for `backend` and
`backend_ctx_ctor`. This simply moves the lookups within `optimize`
lower so we don't end up calling these functions twice unnecessarily
in the `optimize_assert` path.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150753
Approved by: https://github.com/anijain2305, https://github.com/jansel
2025-04-13 15:44:42 +00:00
86370fd658 [dynamo] Allow guards to be dropped with custom filter functions. (#150936)
Summary: A follow up of https://github.com/pytorch/pytorch/pull/150689.

Test Plan: test_dynamo -k test_guard_filter_fn

Differential Revision: D72722322

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150936
Approved by: https://github.com/jansel
2025-04-11 03:06:34 +00:00
3ac5a499dd [dynamo] add dynamo disable reasons to codebase (#150440)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150440
Approved by: https://github.com/jansel, https://github.com/zou3519
ghstack dependencies: #150341
2025-04-02 04:26:48 +00:00
25eff6e991 [dynamo] add reason field to torch.compiler.disable (#150341)
Implements https://github.com/pytorch/pytorch/issues/146445

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150341
Approved by: https://github.com/zou3519, https://github.com/jansel
2025-04-02 04:26:48 +00:00
b0c560ef2a [dynamo][hooks] use wrap_top_frame config for functions (#150209)
When torch.compile is applied to a module via `mod.compile(...)`, it's equivalent to `torch.compile(mod._call_impl)` which takes a different path than `OptimizedModule`. This PR ensures that the `wrap_top_frame` config can also take effect for the `torch.compile(mod._call_impl)` use case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150209
Approved by: https://github.com/anijain2305
2025-04-01 17:41:23 +00:00
754875e237 [ca] API comments and support dynamic shapes via configs (#149709)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149709
Approved by: https://github.com/jansel
ghstack dependencies: #149647
2025-03-24 19:06:45 +00:00
6608d4e3e9 [dynamo] keep chained exceptions in user-facing tracebacks (#149676)
This preserves graph breaks in the case that one graph break directly causes another, e.g. graph breaks in generic context managers.

```python
import torch

class CtxMgr:
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        pass

@torch.compile(backend="eager", fullgraph=True)
def fn():
    with CtxMgr():
        with CtxMgr():
            pass
        with CtxMgr():
            with CtxMgr():
                pass
            torch._dynamo.graph_break()

fn()
```

Output:
```
torch._dynamo.exc.Unsupported: Call to `torch._dynamo.graph_break()`
  Explanation: User-inserted graph break. Message: None
  Hint: Remove the `torch._dynamo.graph_break()` call.

  Developer debug context: Called `torch._dynamo.graph_break()` with args `[]`, kwargs `{}`

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/data/users/williamwen/pytorch/playground.py", line 23, in <module>
    fn()
  File "/data/users/williamwen/pytorch/torch/_dynamo/eval_frame.py", line 664, in _fn
    raise e.with_traceback(None) from e.__cause__
torch._dynamo.exc.Unsupported: Graph break under GenericContextWrappingVariable
  Explanation: Attempted to graph break in an active context manager(s) that doesn't support graph breaking.
  Hint: Move the offending context manager(s) to outside the compiled region.
  Hint: This graph break may have been caused by an earlier graph break. Resolving the earlier graph break may resolve this one.

  Developer debug context: Active generic context managers: [GenericContextWrappingVariable(CtxMgr), GenericContextWrappingVariable(CtxMgr)]

from user code:
   File "/data/users/williamwen/pytorch/playground.py", line 20, in fn
    torch._dynamo.graph_break()

Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"
```

Note in particular that both graph breaks (torch._dynamo.graph_break and graph break in context manager) are present in the logs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149676
Approved by: https://github.com/jansel, https://github.com/zou3519, https://github.com/anijain2305
2025-03-24 17:36:13 +00:00
6bbe8dbd63 [dynamo][hooks] config to wrap the top frame in a wrapper (#149758)
This should be done by default but there are too many issues. This PR is a
workaround.

https://github.com/pytorch/pytorch/issues/117584

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149758
Approved by: https://github.com/yf225
ghstack dependencies: #149712
2025-03-22 07:17:01 +00:00
a66a9581da [dynamo] support Python 3.13t (#149549)
A few bug fixes to get Dynamo mostly working with 3.13 nogil. Dynamo encounters internal CPython assert errors in older versions of 3.13. The fix has been landed on [CPython's 3.13 branch](https://github.com/python/cpython/tree/3.13) and will be included in 3.13.3 (https://peps.python.org/pep-0719/ - april 8). If you wish to try `torch.compile` on the latest 3.13 branch, you can comment out the error checking (i.e. 70b6cd4e11/torch/__init__.py (L2535) and 70b6cd4e11/torch/_dynamo/eval_frame.py (L899)).

We will work on getting PyTorch CI up for Dynamo/dynamo-wrapped/inductor once 3.13.3 is available.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149549
Approved by: https://github.com/jansel
2025-03-20 09:49:27 +00:00
c916a8efc5 Revert "Use the device interface for detecting Triton availability (#139171)"
This reverts commit 940b60db974f08a31c746eec2f9c399fc8a861ee.

Reverted https://github.com/pytorch/pytorch/pull/139171 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking internally. @jansel can you please help get these changes working? See D70946254 for more details. To validate the fixes internally, you can follow the instructions here: https://fburl.com/fixing-ghfirst-reverts ([comment](https://github.com/pytorch/pytorch/pull/139171#issuecomment-2715392451))
2025-03-11 18:49:21 +00:00
940b60db97 Use the device interface for detecting Triton availability (#139171)
This allows for each device type to check current devices for Triton compatibility and ensure their Triton backend is present.

This PR replaces the `has_triton()` global method which was previously used for this task, and moves the initial check for each Inductor backend on to their associated `BaseScheduler` subclass. This means that other backends, such as Halide, can also implement their own availability checks.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139171
Approved by: https://github.com/jansel
2025-03-11 03:56:11 +00:00
8b65d522e1 refactor delayed compile to use code context (#148530)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148530
Approved by: https://github.com/williamwen42
ghstack dependencies: #148509
2025-03-06 04:02:30 +00:00
690fc2c876 Add aot_eager_then_compile stance (#148509)
Sometimes `eager_then_compile` stance isn't enough since some models are so close to the memory limit that going to eager will OOM since we don't get the memory reductions from activation checkpointing. This PR introduces `aot_eager_then_compile` which avoids the expensive inductor compile, but still does aot_eager to get the benefits of memory reduction in the first invocation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148509
Approved by: https://github.com/williamwen42
2025-03-05 23:23:45 +00:00
b28cbe5db3 [dynamo] remove internal stack trace for fullgraph=True graph breaks (#148205)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/148205
Approved by: https://github.com/zou3519
2025-03-05 01:16:53 +00:00
da2688f624 Introduce delayed compile via eager_then_compile stance (#147983)
Recently I've been experimenting with introducing new APIs to delay compile as a way to reduce compile times while improving the ergonomics of using dynamic shapes. The high level idea is to run the first invocation of compile in eager, save the example inputs, and on the second invocation we can derive the dynamism in the inputs so that we don't need to waste our time doing a compile with static shapes (which is the status quo today with automatic dynamic).

Another benefit of this is most users no longer need to annotate their inputs with mark_dynamic and mark_unbaked calls since we can derive the dynamism on the very first call. Additionally we get dynamic ints out of the box in this new regime.

This PR implements this idea through the set_stance APIs. In particular it introduces a new `eager_then_compile` stance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147983
Approved by: https://github.com/williamwen42
2025-03-04 07:46:31 +00:00
40b3e4a358 [dynamo] expose code execution strategy to python (#148020)
@anijain2305 this can be used to mark a code object to be skipped/run-only (recursively) while tracing.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148020
Approved by: https://github.com/jansel
2025-02-28 21:59:12 +00:00
3ce352e389 [BE][PYFMT] migrate PYFMT for torch._dynamo to ruff format (#144549)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144549
Approved by: https://github.com/jansel
2025-02-28 03:03:53 +00:00
21c2565f35 Document dynamo (#146736)
Many files in dynamo are currently lacking file/module-level documentation, which makes it hard to know what they do at a glance and without digging into the code. This fixes that.

Note: documentation was AI-generated and could be incorrect, please review carefully.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146736
Approved by: https://github.com/jansel, https://github.com/StrongerXi, https://github.com/anijain2305, https://github.com/zou3519
2025-02-13 00:02:21 +00:00
298226f358 [dynamo] check for incompatible configs (#146513)
internal: https://fb.workplace.com/groups/1075192433118967/permalink/1599802033991335/

Assuming flags don't change during compilation, we shouldn't allow incompatible configs to be set at torch.compile wrap time.

Not in this PR: For flags that need to change during compilation, we'd have to be strict about where they can be used in the compile lifecycle

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146513
Approved by: https://github.com/williamwen42

Co-authored-by: Gabriel Ferns <gabeferns@meta.com>
2025-02-10 00:44:23 +00:00
1b79d47635 Revert "[dynamo] check for incompatible configs (#146513)"
This reverts commit aab7925418be561a8af6adfcb8cf009a8786c31b.

Reverted https://github.com/pytorch/pytorch/pull/146513 on behalf of https://github.com/atalman due to inductor/test_fuzzer.py::TestConfigFuzzer::test_config_fuzzer_dynamo_bisect [GH job link](https://github.com/pytorch/pytorch/actions/runs/13174131431/job/36772837627) [HUD commit link](4a545eb85d) ([comment](https://github.com/pytorch/pytorch/pull/146513#issuecomment-2639860568))
2025-02-06 13:42:25 +00:00
aab7925418 [dynamo] check for incompatible configs (#146513)
internal: https://fb.workplace.com/groups/1075192433118967/permalink/1599802033991335/

Assuming flags don't change during compilation, we shouldn't allow incompatible configs to be set at torch.compile wrap time.

Not in this PR: For flags that need to change during compilation, we'd have to be strict about where they can be used in the compile lifecycle

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146513
Approved by: https://github.com/williamwen42
2025-02-06 07:39:52 +00:00
49df8de8be [dynamo] disable eval_frame callback in _TorchDynamoContext __enter__/__exit__ (#145981)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145981
Approved by: https://github.com/jansel
2025-01-31 20:40:59 +00:00
3481c2aec4 Revert "[dynamo] save/restore system random state more carefully (#145750)"
This reverts commit e3d3f2b22e4b75c64eaa2f940a2dd80c1e43435c.

Reverted https://github.com/pytorch/pytorch/pull/145750 on behalf of https://github.com/eellison due to bisected perf regression ([comment](https://github.com/pytorch/pytorch/pull/145750#issuecomment-2620028414))
2025-01-28 20:51:07 +00:00
e3d3f2b22e [dynamo] save/restore system random state more carefully (#145750)
Reattempt of https://github.com/pytorch/pytorch/pull/145435 since the state of the linked internal diff appears to be messed up.

Note: I have verified that the previously failing internal tests now pass internally.

Differential Revision: [D68723334](https://our.internmc.facebook.com/intern/diff/D68723334)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145750
Approved by: https://github.com/StrongerXi
2025-01-28 01:34:13 +00:00
bfaf76bfc6 [dynamo] clear out traced frames at the start of test_log_traced_frames (#145640)
The test was being flaky in CI, and this patch fixes it.

Fixes #137461.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145640
Approved by: https://github.com/williamwen42
2025-01-27 20:49:59 +00:00
a79100ab11 PEP585 update - torch/_dynamo (#145105)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145105
Approved by: https://github.com/bobrenjc93
2025-01-18 20:47:11 +00:00
1fe3af2c68 Migrate from Tuple -> tuple in torch/_dynamo (#144261)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144261
Approved by: https://github.com/aorenste, https://github.com/zou3519
2025-01-10 07:45:57 +00:00
f700035090 [3.13t] use sysconfig to check for Python nogil builds (#144361)
`sys._is_gil_enabled()` wasn't working in certain cases, according to @atalman

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144361
Approved by: https://github.com/atalman
2025-01-08 13:00:32 +00:00
9e5f3fdfc7 [dynamo] Shorten tracebacks for backend compiler errors (#143552)
Fixes #143406

After this PR the error for missing Triton is:
```py
Traceback (most recent call last):
  File "/home/jansel/pytorch/repro.py", line 51, in <module>
    fp32_compiled = optimized_model(low_input)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/nn/modules/module.py", line 1750, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/eval_frame.py", line 580, in _fn
    raise e.remove_dynamo_frames() from None  # see TORCHDYNAMO_VERBOSE=1
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/scheduler.py", line 3624, in create_backend
    raise TritonMissing(inspect.currentframe())
torch._dynamo.exc.TritonMissing: Cannot find a working triton installation. Either the package is not installed or it is too old. More information on installing Triton can be found at: https://github.com/triton-lang/triton

Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information

You can suppress this exception and fall back to eager by setting:
    import torch._dynamo
    torch._dynamo.config.suppress_errors = True
```

Setting `TORCHDYNAMO_VERBOSE=1` yields something like the old error:
```py
Traceback (most recent call last):
  File "/home/jansel/pytorch/repro.py", line 51, in <module>
    fp32_compiled = optimized_model(low_input)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/nn/modules/module.py", line 1750, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/eval_frame.py", line 580, in _fn
    raise e.remove_dynamo_frames() from None  # see TORCHDYNAMO_VERBOSE=1
    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/eval_frame.py", line 576, in _fn
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/nn/modules/module.py", line 1739, in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/nn/modules/module.py", line 1750, in _call_impl
    return forward_call(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 1383, in __call__
    return self._torchdynamo_orig_callable(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 1167, in __call__
    result = self._inner_convert(
             ^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 548, in __call__
    return _compile(
           ^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 988, in _compile
    guarded_code = compile_inner(code, one_graph, hooks, transform)
                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 716, in compile_inner
    return _compile_inner(code, one_graph, hooks, transform)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_utils_internal.py", line 95, in wrapper_function
    return function(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 751, in _compile_inner
    out_code = transform_code_object(code, transform)
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/bytecode_transformation.py", line 1361, in transform_code_object
    transformations(instructions, code_options)
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 232, in _fn
    return fn(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/convert_frame.py", line 663, in transform
    tracer.run()
  File "/home/jansel/pytorch/torch/_dynamo/symbolic_convert.py", line 2870, in run
    super().run()
  File "/home/jansel/pytorch/torch/_dynamo/symbolic_convert.py", line 1053, in run
    while self.step():
          ^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/symbolic_convert.py", line 963, in step
    self.dispatch_table[inst.opcode](self, inst)
  File "/home/jansel/pytorch/torch/_dynamo/symbolic_convert.py", line 3050, in RETURN_VALUE
    self._return(inst)
  File "/home/jansel/pytorch/torch/_dynamo/symbolic_convert.py", line 3035, in _return
    self.output.compile_subgraph(
  File "/home/jansel/pytorch/torch/_dynamo/output_graph.py", line 1102, in compile_subgraph
    self.compile_and_call_fx_graph(
  File "/home/jansel/pytorch/torch/_dynamo/output_graph.py", line 1383, in compile_and_call_fx_graph
    compiled_fn = self.call_user_compiler(gm)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/output_graph.py", line 1433, in call_user_compiler
    return self._call_user_compiler(gm)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/output_graph.py", line 1463, in _call_user_compiler
    compiled_fn = compiler_fn(gm, self.example_inputs())
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/repro/after_dynamo.py", line 130, in __call__
    compiled_gm = compiler_fn(gm, example_inputs)
                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/__init__.py", line 2314, in __call__
    return compile_fx(model_, inputs_, config_patches=self.config)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/compile_fx.py", line 1880, in compile_fx
    return aot_autograd(
           ^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/backends/common.py", line 83, in __call__
    cg = aot_module_simplified(gm, example_inputs, **self.kwargs)
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_functorch/aot_autograd.py", line 1145, in aot_module_simplified
    compiled_fn = AOTAutogradCache.load(
                  ^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_functorch/_aot_autograd/autograd_cache.py", line 754, in load
    compiled_fn = dispatch_and_compile()
                  ^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_functorch/aot_autograd.py", line 1131, in dispatch_and_compile
    compiled_fn, _ = create_aot_dispatcher_function(
                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_functorch/aot_autograd.py", line 580, in create_aot_dispatcher_function
    return _create_aot_dispatcher_function(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_functorch/aot_autograd.py", line 830, in _create_aot_dispatcher_function
    compiled_fn, fw_metadata = compiler_fn(
                               ^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_functorch/_aot_autograd/jit_compile_runtime_wrappers.py", line 676, in aot_dispatch_autograd
    compiled_fw_func = aot_config.fw_compiler(fw_module, adjusted_flat_args)
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_functorch/aot_autograd.py", line 489, in __call__
    return self.compiler_fn(gm, example_inputs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/compile_fx.py", line 1758, in fw_compiler_base
    return inner_compile(
           ^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/compile_fx.py", line 572, in compile_fx_inner
    return wrap_compiler_debug(_compile_fx_inner, compiler_name="inductor")(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_dynamo/repro/after_aot.py", line 102, in debug_wrapper
    inner_compiled_fn = compiler_fn(gm, example_inputs)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/compile_fx.py", line 686, in _compile_fx_inner
    mb_compiled_graph = fx_codegen_and_compile(
                        ^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/compile_fx.py", line 1129, in fx_codegen_and_compile
    return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/compile_fx.py", line 1044, in codegen_and_compile
    compiled_fn = graph.compile_to_module().call
                  ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/graph.py", line 1975, in compile_to_module
    return self._compile_to_module()
           ^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/graph.py", line 1981, in _compile_to_module
    self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
                                                             ^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/graph.py", line 1916, in codegen
    self.scheduler.codegen()
  File "/home/jansel/pytorch/torch/_inductor/scheduler.py", line 3667, in codegen
    return self._codegen()
           ^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/scheduler.py", line 3761, in _codegen
    if device is not None and self.get_backend(device).ready_to_flush():
                              ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/scheduler.py", line 3631, in get_backend
    self.backends[device] = self.create_backend(device)
                            ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/jansel/pytorch/torch/_inductor/scheduler.py", line 3624, in create_backend
    raise TritonMissing(inspect.currentframe())
torch._dynamo.exc.TritonMissing: Cannot find a working triton installation. Either the package is not installed or it is too old. More information on installing Triton can be found at: https://github.com/triton-lang/triton

You can suppress this exception and fall back to eager by setting:
    import torch._dynamo
    torch._dynamo.config.suppress_errors = True
```

This PR also strips dynamo stack frames from other types of backend compile errors.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143552
Approved by: https://github.com/yanboliang
2024-12-24 21:48:23 +00:00
ffd1b53f26 [aot] refactor dynamo source and cudagraphs static idx logic (#141748)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141748
Approved by: https://github.com/ezyang
2024-12-21 01:20:53 +00:00
e1e83015d2 [dynamo, 3.13t] raise error if torch.compile is attempted in 3.13t (nogil) (#143404)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143404
Approved by: https://github.com/colesbury, https://github.com/atalman
2024-12-19 18:10:01 +00:00
1b6b86fad7 [dynamo] disable eval frame callback around most of _TorchDynamoContext wrapper function (#143211)
Internal xref: https://fb.workplace.com/groups/1075192433118967/permalink/1559636954674510/

If the `_fn` returned by `_TorchDynamoContext.__call__` makes an external function call, dynamo is recursively invoked. This can cause issues if there are added calls that are not skipped by Dynamo. So we should disable the eval frame callback as much as possible.

Differential Revision: [D67211749](https://our.internmc.facebook.com/intern/diff/D67211749)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143211
Approved by: https://github.com/jansel
2024-12-16 18:38:58 +00:00
dc23f1944a Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-12 17:39:14 +00:00
5c97ac9721 Revert "Remove unused Python variables in torch/[_-a]* (#133492)"
This reverts commit fda975a7b3071a20dab8fc2c4e453479e1bb7cf2.

Reverted https://github.com/pytorch/pytorch/pull/133492 on behalf of https://github.com/clee2000 due to Sorry, I need to revert this in order to revert something else.  The only thing you need to do is rebase and remerge ([comment](https://github.com/pytorch/pytorch/pull/133492#issuecomment-2536635516))
2024-12-11 17:29:12 +00:00
fda975a7b3 Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-10 21:48:44 +00:00
416f500bfe [CI, 3.13] enable 3.13 CI (#139533)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139533
Approved by: https://github.com/atalman, https://github.com/malfet
ghstack dependencies: #141409, #142003, #141572, #141577, #141605, #141621, #141623, #141673, #141674, #141858, #141862
2024-12-05 00:25:03 +00:00
f472b3aee1 improve typings around torch.export (#141829)
This is another follow-up to https://github.com/pytorch/pytorch/pull/115074 / https://github.com/pytorch/pytorch/pull/141240 following the strategy discussed there (https://github.com/pytorch/pytorch/pull/115074#issuecomment-2480992230).

This PR improves the type annotations around `torch._export`. Even though the PR introduces a few runtime type asserts, the runtime behavior should stay equivalent, because the failed assertions should have been immediate crashes anyway.

CC @Skylion007 @ezyang

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141829
Approved by: https://github.com/ezyang
2024-12-03 19:57:21 +00:00
08db735629 [BE]: Update mypy to 1.13.0 (#140808)
Update mypy to 1.13.0 . Should hopefully reduce linting time. Has support for orjson cache serialization which should improve mypy cache perf if orjson is installed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140808
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-12-03 02:50:10 +00:00
daa77f3d9f Revert "[BE]: Update mypy to 1.13.0 (#140808)"
This reverts commit 00134d68af2ce50560fa5a74473665ea229e6c9d.

Reverted https://github.com/pytorch/pytorch/pull/140808 on behalf of https://github.com/huydhn due to This is failing a distributed test in trunk, target determination missed this test and did not run it on PR ([comment](https://github.com/pytorch/pytorch/pull/140808#issuecomment-2512788426))
2024-12-02 20:47:43 +00:00
00134d68af [BE]: Update mypy to 1.13.0 (#140808)
Update mypy to 1.13.0 . Should hopefully reduce linting time. Has support for orjson cache serialization which should improve mypy cache perf if orjson is installed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/140808
Approved by: https://github.com/ezyang, https://github.com/malfet
2024-12-02 18:47:54 +00:00
db4e8a1d8a [ca] expose option to collect sizes as dynamic (#141153)
This is to address recompiles from eager nodes that saved dynamic activations

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141153
Approved by: https://github.com/jansel
ghstack dependencies: #141152
2024-11-22 19:26:27 +00:00
2239d1a7a3 Revert "[CI, 3.13] enable 3.13 CI (#139533)"
This reverts commit b7a25c1ee7cdb559516db2b10279c996742a1708.

Reverted https://github.com/pytorch/pytorch/pull/139533 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing test_cpp_extensions_open_device_registration. The test was wrongly excluded by TD ([comment](https://github.com/pytorch/pytorch/pull/139533#issuecomment-2494328806))
2024-11-22 17:18:49 +00:00
b7a25c1ee7 [CI, 3.13] enable 3.13 CI (#139533)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139533
Approved by: https://github.com/atalman, https://github.com/malfet
2024-11-22 14:43:02 +00:00
612122af8f Fix type-safety of torch.nn.Module instances (#141240)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141240
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-11-22 00:05:05 +00:00