mirror of
https://github.com/pytorch/pytorch.git
synced 2025-10-21 05:34:18 +08:00
347ace4c7ac2dbb14799089c30bd01a9ac312791
550 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
347ace4c7a |
Inductor logging + analysis of torch.profile (#149697)
Prereqs: - https://github.com/pytorch/pytorch/pull/152708 Features: 1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses. 1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`. 1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`. 1. Extends Triton `torch.profiler` logging to `DebugAutotuner`. 1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side: ```python Device(NVIDIA H100, 0): Kernel Name | resnet Kernel Count | resnet FLOPS | resnet bw gbps | resnet Dur (ms) | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS | newresnet bw gbps | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth % --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- triton_poi_fused__native_batch_norm_legi | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 triton_red_fused__native_batch_norm_legi | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 triton_poi_fused__native_batch_norm_legi | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 void cutlass::Kernel2<cutlass_80_tensoro | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 triton_red_fused__native_batch_norm_legi | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 void cutlass::Kernel2<cutlass_80_tensoro | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 triton_poi_fused__native_batch_norm_legi | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 triton_red_fused__native_batch_norm_legi | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 triton_per_fused__native_batch_norm_legi | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 triton_poi_fused__native_batch_norm_legi | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 triton_per_fused__native_batch_norm_legi | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 triton_poi_fused__native_batch_norm_legi | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 void cublasLt::splitKreduce_kernel<32, 1 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 triton_per_fused__native_batch_norm_legi | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 triton_poi_fused__native_batch_norm_legi | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 void cask_plugin_cudnn::xmma_cudnn::init | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 triton_per_fused__native_batch_norm_legi | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 triton_per_fused__native_batch_norm_legi | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 void cutlass::Kernel2<cutlass_80_tensoro | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 triton_poi_fused__native_batch_norm_legi | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 triton_poi_fused__native_batch_norm_legi | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 triton_poi_fused__native_batch_norm_legi | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 triton_per_fused__native_batch_norm_legi | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 triton_poi_fused__native_batch_norm_legi | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 triton_per_fused__native_batch_norm_legi | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 triton_poi_fused__native_batch_norm_legi | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 triton_per_fused__native_batch_norm_legi | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 std::enable_if<!(false), void>::type int | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 triton_poi_fused_add_copy__38 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 triton_poi_fused_convolution_0 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 triton_poi_fused_convolution_1 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 void convolve_common_engine_float_NHWC<f | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 triton_per_fused__native_batch_norm_legi | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 triton_per_fused__native_batch_norm_legi | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 triton_poi_fused__native_batch_norm_legi | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 void at::native::(anonymous namespace):: | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 void at::native::vectorized_elementwise_ | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697 Approved by: https://github.com/eellison, https://github.com/shunting314 |
|||
02c7ab2f9b |
[cpp wrapper] add AOTI shim for collective ops (#154492)
Implementations: 1. Move collective ops to c10d namespace, so that we can call them externally. 2. Add AOTI shims for collective ops. Testing 1. Add c10d functional UT for cpu. 2. Include the above one in cpp wrapper UT. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154492 Approved by: https://github.com/desertfire |
|||
86996c15dc |
[Inductor] Allow exhaustive autotuning across all GEMM options (#156610)
Differential Revision: D76843916 Exhaustive autotuning is meant to autotune GEMM configs across the entire search space of possible configs. Some of these configs can cause extremely long compilation times and OOMs, especially with configs of the following nature: Excessive register spillage Using much larger amounts of shared memory than available on the hardware This diff prunes out those configs to make exhaustive autotuning more viable, along with supporting exhaustive autotuning for persistent+tma template and decompose_k. Previously, exhaustive autotuning would hang, now we are able to tune shapes in ~5 minutes. Below is a sample log for autotuning with exhaustive: ``` AUTOTUNE mm(1152x21504, 21504x1024) strides: [21504, 1], [1, 21504] dtypes: torch.bfloat16, torch.bfloat16 mm 0.1167 ms 100.0% triton_mm_6270 0.1172 ms 99.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=64, BLOCK_N=256, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_6522 0.1183 ms 98.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_persistent_tma_7482 0.1190 ms 98.1% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=5, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_persistent_tma_7483 0.1195 ms 97.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=5, num_warps=8, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_6523 0.1274 ms 91.6% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=5, num_warps=8, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_6267 0.1285 ms 90.8% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=64, BLOCK_N=256, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_6519 0.1287 ms 90.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, EVEN_K=True, GROUP_M=8, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_persistent_tma_7480 0.1298 ms 89.9% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=128, BLOCK_N=128, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0 triton_mm_persistent_tma_7312 0.1302 ms 89.7% ACC_TYPE='tl.float32', ALLOW_TF32=False, A_ROW_MAJOR=True, BLOCK_K=64, BLOCK_M=64, BLOCK_N=256, B_ROW_MAJOR=False, EVEN_K=True, GROUP_M=8, NUM_SMS=132, TMA_SIZE=128, USE_FAST_ACCUM=False, num_stages=4, num_warps=4, num_consumer_groups=0, num_buffers_warp_spec=0 SingleProcess AUTOTUNE benchmarking takes 298.7185 seconds and 21.2569 seconds precompiling for 2210 choices INFO:tritonbench.utils.triton_op:Took 333894.46ms to get benchmark function for pt2_matmul_maxautotune ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/156610 Approved by: https://github.com/jansel |
|||
6b45af38a5 |
[easy] better copy_misaligned_inputs assertion failure message (#154472)
internal xref: https://fb.workplace.com/groups/1075192433118967/permalink/688540560729579/ Pull Request resolved: https://github.com/pytorch/pytorch/pull/154472 Approved by: https://github.com/williamwen42 |
|||
6ff6630375 |
[BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156313 Approved by: https://github.com/jingsh |
|||
f1331f3f1b |
Revert "[BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)"
This reverts commit 3627270bdf17b0fb6f528ca1cb87d6f2ec32680a.
Reverted https://github.com/pytorch/pytorch/pull/156313 on behalf of https://github.com/atalman due to export/test_torchbind.py::TestCompileTorchbind::test_compile_error_on_input_aliasing_contents_backend_aot_eager [GH job link](https://github.com/pytorch/pytorch/actions/runs/15804799771/job/44548489912) [HUD commit link](
|
|||
3627270bdf |
[BE][3/16] fix typos in torch/ (torch/_inductor/) (#156313)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156313 Approved by: https://github.com/jingsh |
|||
88b9c285e0 |
Workaround for e4m2 dtype (#156461)
Found in: https://github.com/pytorch/ao/pull/2408 Pull Request resolved: https://github.com/pytorch/pytorch/pull/156461 Approved by: https://github.com/vkuzo |
|||
6098209bff |
[BE][5/X] Phase out usage of use_max_autotune() (#156269)
These look to be the last call sites using `use_max_autotune(...)`, so remove those and `use_max_autotune(...)` Pull Request resolved: https://github.com/pytorch/pytorch/pull/156269 Approved by: https://github.com/masnesral |
|||
83259cf7a7 |
[Inductor][Intel GPU] Support mkldnn Conv post op fusion for XPU. (#150287)
This PR adds support for MKLDNN Conv post-op fusion in the Inductor Intel GPU backend under freezing mode. The implementation reuses the CPU's MKLDNN pattern fusion mechanism, as well as the corresponding Inductor unit tests for CPU MKLDNN pattern fusion. The performance improvement: | Suite | Inductor Speedup (Baseline) | Inductor Speedup (Compared) | Acc Failed | Perf Failed | Inductor Perf Ratio | Speedup | |-------------|-----------------------------|------------------------------|------------|--------------|----------------------|----------| | Huggingface | 2.134838 | 2.125740314 | 0 | 0 | 1.001462504 | 100.43% | | Torchbench | 1.808558 | 1.675100479 | 0 | 0 | 1.075722187 | 107.97% | | Timm | 2.343893 | 2.070476653 | 0 | 0 | 1.131023832 | 113.21% | Pull Request resolved: https://github.com/pytorch/pytorch/pull/150287 Approved by: https://github.com/ZhiweiYan-96, https://github.com/EikanWang, https://github.com/jansel |
|||
3f69e3b3a0 |
Add view_simple as meta function for view, and avoid calling reshape_view_helper for unbacked (#154757)
address https://github.com/pytorch/pytorch/issues/153303 Pull Request resolved: https://github.com/pytorch/pytorch/pull/154757 Approved by: https://github.com/bobrenjc93, https://github.com/leslie-fang-intel |
|||
a2a75be0f8 |
Rename inductor cache (#156128)
Requested by Simon on a different PR Pull Request resolved: https://github.com/pytorch/pytorch/pull/156128 Approved by: https://github.com/xmfan |
|||
ce79056471 |
Custom FX pass for inductor's backend registration (#154841)
This PR is related to RFC #153532. It is an extension to Inductor's backend registration interface to allow to register custom FX passes by the backend. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154841 Approved by: https://github.com/jansel Co-authored-by: Jason Ansel <jansel@jansel.net> |
|||
3e38feb05f |
[inductor] Add configuration control for CUTLASS operation selection. (#155770)
Added a new configuration option `cutlass_enabled_ops` that allows users to control which operations use CUTLASS lowerings. By default, CUTLASS is enabled for all operations (maintaining backward compatibility), but users can now selectively enable it only for specific operations to optimize compilation time. **Fixes #155718** ## Usage Examples ```bash # Enable CUTLASS for all operations (default behavior) export TORCHINDUCTOR_CUTLASS_ENABLED_OPS="ALL" # Enable CUTLASS only for matrix multiplication operations export TORCHINDUCTOR_CUTLASS_ENABLED_OPS="mm,addmm" # Enable CUTLASS only for batch operations export TORCHINDUCTOR_CUTLASS_ENABLED_OPS="bmm,baddbmm" # Disable CUTLASS for all operations export TORCHINDUCTOR_CUTLASS_ENABLED_OPS="" ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/155770 Approved by: https://github.com/henrylhtsang |
|||
06408dae49 |
Revert "Add view_simple as meta function for view, and avoid calling reshape_view_helper. (#154757)"
This reverts commit 0029259bdfeee627181df2b9f5ff6979f65090ec. Reverted https://github.com/pytorch/pytorch/pull/154757 on behalf of https://github.com/laithsakka due to post land issue ([comment](https://github.com/pytorch/pytorch/pull/154757#issuecomment-2971385787)) |
|||
f4376cac54 |
unify symbolic_shapes and sizevars dynamic shapes APIs naming 1 (#154774)
Inductor have a set of APIs that allows performing symbolic evaluations similar to that of symbolic shapes but it operates on sympy expressions instead of symnodes. Namings are not consistent making them consistent in this stack. Step 1 : unify statically_know_true naming! for consistent experience. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154774 Approved by: https://github.com/drisspg, https://github.com/bobrenjc93, https://github.com/eellison |
|||
0029259bdf |
Add view_simple as meta function for view, and avoid calling reshape_view_helper. (#154757)
address https://github.com/pytorch/pytorch/issues/153303 Pull Request resolved: https://github.com/pytorch/pytorch/pull/154757 Approved by: https://github.com/bobrenjc93, https://github.com/leslie-fang-intel |
|||
c3ecabf059 |
[inductor][triton pin] add support for new TMA API for mm.py templates (#155723)
Triton 3.4 will remove the experimental TMA APIs: https://github.com/triton-lang/triton/pull/6488 For mm.py templates, this PR adds support for using the new APIs when they are available (and otherwise falls back to the experimental APIs). For flex_attention, we'll remove TMA support for Triton 3.2 and 3.3 (versions of triton that don't have the new API). For mm_scaled_grouped.py, https://github.com/pytorch/pytorch/pull/150944 will remove TMA support for Triton 3.2. Note: we attempted this earlier with https://github.com/pytorch/pytorch/pull/154858, but this broke TMA usage in Triton 3.2. Differential Revision: [D76444471](https://our.internmc.facebook.com/intern/diff/D76444471) Pull Request resolved: https://github.com/pytorch/pytorch/pull/155723 Approved by: https://github.com/NikhilAPatel |
|||
1b6772a90f |
A small fix in do_bench_using_profiling (#155500)
Summary: Results: https://docs.google.com/document/d/1B_4rtiDFPH_jV3VpnqLPnInwDMpF7yX29G82UoJTcu8/edit?tab=t.0 Test Plan: ``` buck2 run mode/opt -c fbcode.enable_gpu_sections=true ai_acceleration/float8/benchmarks/bench:bench_fp8_shapes_eval 2>&1 | tee output44.txt ``` Rollback Plan: Differential Revision: D76298690 Pull Request resolved: https://github.com/pytorch/pytorch/pull/155500 Approved by: https://github.com/yoyoyocmu, https://github.com/nmacchioni |
|||
d1947a8707 |
Migrate from lru_cache to cache (#155613)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155613 Approved by: https://github.com/ezyang ghstack dependencies: #155612 |
|||
0b677560e6 |
[inductor] use int64 for large index (#154575)
Split reduction may need add an extra mask to avoid invalid index. Previously we always uses torch.int32 dtype. That causes problem when the tensor numel exceeds 2^31. Fix https://github.com/pytorch/pytorch/issues/154168 Pull Request resolved: https://github.com/pytorch/pytorch/pull/154575 Approved by: https://github.com/ngimel, https://github.com/jansel |
|||
eb152ab1dd |
Revert "Inductor logging + analysis of torch.profile (#149697)"
This reverts commit 060838c2312ad207c7afe2c86f8a484afea5f328.
Reverted https://github.com/pytorch/pytorch/pull/149697 on behalf of https://github.com/clee2000 due to broke a bunch of tests internally D76299454, probably also broke rocm inductor/test_analysis.py::TestAnalysisCUDA::test_augment_trace_against_flop_counter_maxat0_cuda_float16 [GH job link](https://github.com/pytorch/pytorch/actions/runs/15545277599/job/43766911025) [HUD commit link](
|
|||
060838c231 |
Inductor logging + analysis of torch.profile (#149697)
Prereqs: - https://github.com/pytorch/pytorch/pull/152708 Features: 1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses. 1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`. 1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`. 1. Extends Triton `torch.profiler` logging to `DebugAutotuner`. 1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side: ```python Device(NVIDIA H100, 0): Kernel Name | resnet Kernel Count | resnet FLOPS | resnet bw gbps | resnet Dur (ms) | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS | newresnet bw gbps | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth % --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- triton_poi_fused__native_batch_norm_legi | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 triton_red_fused__native_batch_norm_legi | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 triton_poi_fused__native_batch_norm_legi | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 void cutlass::Kernel2<cutlass_80_tensoro | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 triton_red_fused__native_batch_norm_legi | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 void cutlass::Kernel2<cutlass_80_tensoro | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 triton_poi_fused__native_batch_norm_legi | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 triton_red_fused__native_batch_norm_legi | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 triton_per_fused__native_batch_norm_legi | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 triton_poi_fused__native_batch_norm_legi | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 triton_per_fused__native_batch_norm_legi | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 triton_poi_fused__native_batch_norm_legi | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 void cublasLt::splitKreduce_kernel<32, 1 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 triton_per_fused__native_batch_norm_legi | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 triton_poi_fused__native_batch_norm_legi | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 void cask_plugin_cudnn::xmma_cudnn::init | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 triton_per_fused__native_batch_norm_legi | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 triton_per_fused__native_batch_norm_legi | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 void cutlass::Kernel2<cutlass_80_tensoro | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 triton_poi_fused__native_batch_norm_legi | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 triton_poi_fused__native_batch_norm_legi | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 triton_poi_fused__native_batch_norm_legi | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 triton_per_fused__native_batch_norm_legi | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 triton_poi_fused__native_batch_norm_legi | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 triton_per_fused__native_batch_norm_legi | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 triton_poi_fused__native_batch_norm_legi | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 triton_per_fused__native_batch_norm_legi | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 std::enable_if<!(false), void>::type int | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 triton_poi_fused_add_copy__38 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 triton_poi_fused_convolution_0 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 triton_poi_fused_convolution_1 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 void convolve_common_engine_float_NHWC<f | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 triton_per_fused__native_batch_norm_legi | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 triton_per_fused__native_batch_norm_legi | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 triton_poi_fused__native_batch_norm_legi | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 void at::native::(anonymous namespace):: | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 void at::native::vectorized_elementwise_ | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697 Approved by: https://github.com/eellison, https://github.com/shunting314 |
|||
1e6a653234 |
[ROCm][Inductor][CK] Split ck and ck-tile inductor backend(s) (#155294)
... and fix ck-tile instances not being generated due to incorrect caching ### Testing Added test cases for CKTILE instances ``` pytest test/inductor/test_ck_backend.py -k gemm_backends_CKTILE ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/155294 Approved by: https://github.com/coconutruben |
|||
79bdafe5b6 |
Revert "Custom FX pass for inductor's backend registration (#154841)"
This reverts commit e694280d1215caf70f41575f2611bfa26c69ebdb. Reverted https://github.com/pytorch/pytorch/pull/154841 on behalf of https://github.com/clee2000 due to failing some tests internally D76135706 ([comment](https://github.com/pytorch/pytorch/pull/154841#issuecomment-2956357711)) |
|||
27df0c56b7 |
Revert "[inductor] use int64 for large index (#154575)"
This reverts commit 2596e3d0617852469241be8777cf46db5c83928c.
Reverted https://github.com/pytorch/pytorch/pull/154575 on behalf of https://github.com/clee2000 due to broke inductor/test_op_dtype_prop.py::TestCaseCUDA::test_op_dtype_propagation_add_cuda_int32 [GH job link](https://github.com/pytorch/pytorch/actions/runs/15510656657/job/43673763835) [HUD commit link](
|
|||
2596e3d061 |
[inductor] use int64 for large index (#154575)
Split reduction may need add an extra mask to avoid invalid index. Previously we always uses torch.int32 dtype. That causes problem when the tensor numel exceeds 2^31. Fix https://github.com/pytorch/pytorch/issues/154168 Pull Request resolved: https://github.com/pytorch/pytorch/pull/154575 Approved by: https://github.com/ngimel, https://github.com/jansel |
|||
7e4c097b07 |
Revert "[inductor] Add typing to _inductor/ir.py (#149958)"
This reverts commit 529e0357c6c4e74f8cd32c29198c5f1c9f6e329d.
Reverted https://github.com/pytorch/pytorch/pull/149958 on behalf of https://github.com/malfet due to Looks like it broke inductor_torchbind tests, due to more graphbreaks, see
|
|||
529e0357c6 |
[inductor] Add typing to _inductor/ir.py (#149958)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149958 Approved by: https://github.com/Skylion007 |
|||
e694280d12 |
Custom FX pass for inductor's backend registration (#154841)
This PR is related to RFC #153532. It is an extension to Inductor's backend registration interface to allow to register custom FX passes by the backend. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154841 Approved by: https://github.com/jansel Co-authored-by: Jason Ansel <jansel@jansel.net> |
|||
5e03433443 |
Revert "Inductor logging + analysis of torch.profile (#149697)"
This reverts commit e5afbe31245287a92fe328c404b3557e5c5eca73.
Reverted https://github.com/pytorch/pytorch/pull/149697 on behalf of https://github.com/malfet due to Broke rocm, see
|
|||
e5afbe3124 |
Inductor logging + analysis of torch.profile (#149697)
Prereqs: - https://github.com/pytorch/pytorch/pull/152708 Features: 1. Adds inductor's estimate of flops and bandwidth to the json trace events that perfetto uses. 1. Only use the tflops estimation from triton if we don't have the info from the datasheet because Triton's estimates are inaccurate. I have a backlog item to fix triton flops estimation upstream. New `DeviceInfo` class, and new function `get_device_tflops`. 1. New helpers `countable_fx` and `count_flops_fx` helps get the flops of an `fx.Node`. 1. Extends Triton `torch.profiler` logging to `DebugAutotuner`. 1. New script `profile_analysis.py`: `--augment_trace` adds perf estimates to any perfetto json trace, `--analyze` creates a summary table of these perf estimates, and `--diff` will compare two traces side by side: ```python Device(NVIDIA H100, 0): Kernel Name | resnet Kernel Count | resnet FLOPS | resnet bw gbps | resnet Dur (ms) | resnet Achieved FLOPS % | resnet Achieved Bandwidth % | newresnet Kernel Count | newresnet FLOPS | newresnet bw gbps | newresnet Dur (ms) | newresnet Achieved FLOPS % | newresnet Achieved Bandwidth % --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- triton_poi_fused__native_batch_norm_legi | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 | 24 | 0 | 0.11395268248131513 | 2.5919166666666666 | 0 | 0.003401572611382541 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 | 142 | 16932673552.422373 | 0.2585007824198784 | 12.441619718309857 | 0.08683422334575583 | 0.007716441266265022 triton_red_fused__native_batch_norm_legi | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 | 39 | 0 | 0.13990024992108846 | 5.752589743589743 | 0 | 0.004176126863316074 triton_poi_fused__native_batch_norm_legi | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 | 25 | 0 | 0.31824055917536503 | 2.5291999999999994 | 0 | 0.009499718184339253 void cutlass::Kernel2<cutlass_80_tensoro | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 | 98 | 16211056473.596165 | 0.42972434051025826 | 7.130408163265306 | 0.08313362294151874 | 0.012827592254037562 triton_red_fused__native_batch_norm_legi | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 | 73 | 0 | 0.3225381327611705 | 9.987068493150682 | 0 | 0.009628003963020014 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 | 15 | 0 | 1.4491211346487216 | 4.439333333333333 | 0 | 0.043257347302946926 void cutlass::Kernel2<cutlass_80_tensoro | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 | 186 | 14501701145.337954 | 0.2667131401910989 | 7.873865591397849 | 0.07436769818122027 | 0.007961586274361157 triton_poi_fused__native_batch_norm_legi | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 | 33 | 0 | 1.4924556538193923 | 4.3101515151515155 | 0 | 0.044550915039384846 triton_red_fused__native_batch_norm_legi | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 | 29 | 0 | 0.25562590522631107 | 6.296275862068965 | 0 | 0.007630624036606301 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 | 13 | 0 | 0.5870562174192726 | 2.7397692307692307 | 0 | 0.01752406619162008 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 | 34 | 0 | 0.41409928846284 | 2.853588235294117 | 0 | 0.012361172789935523 triton_per_fused__native_batch_norm_legi | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 | 34 | 0 | 0.11705315007018151 | 3.460647058823529 | 0 | 0.0034941238826919864 triton_poi_fused__native_batch_norm_legi | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 | 16 | 0 | 0.17207853197124584 | 2.3459375000000002 | 0 | 0.005136672596156592 triton_per_fused__native_batch_norm_legi | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 | 30 | 0 | 0.2639714322022256 | 6.131199999999999 | 0 | 0.007879744244842555 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 | 100 | 11875430356.891787 | 0.19494470869421385 | 16.36534 | 0.06089964285585531 | 0.005819245035648175 triton_poi_fused__native_batch_norm_legi | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 | 8 | 0 | 0.9854096626224687 | 3.2757500000000004 | 0 | 0.029415213809625928 void cublasLt::splitKreduce_kernel<32, 1 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 | 56 | 34377923395.147064 | 0.8310300045762317 | 3.4199999999999986 | 0.17629704305203628 | 0.024806865808245714 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 | 23 | 0 | 0.9944002965861103 | 3.2431304347826084 | 0 | 0.02968359094286896 triton_per_fused__native_batch_norm_legi | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 | 10 | 0 | 0.1826801058931057 | 4.428800000000001 | 0 | 0.00545313748934644 triton_poi_fused__native_batch_norm_legi | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 | 10 | 0 | 0.3168973585366449 | 2.5471999999999997 | 0 | 0.009459622642884923 triton_poi_fused__native_batch_norm_legi | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 | 34 | 0 | 1.1463614897015777 | 4.124323529411764 | 0 | 0.03421974596124114 void cask_plugin_cudnn::xmma_cudnn::init | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 | 44 | 44045510816.64277 | 2.0661232850348643 | 3.6887499999999993 | 0.22587441444432194 | 0.06167532194133924 sm90_xmma_fprop_implicit_gemm_f32f32_tf3 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 | 95 | 7876855400.165316 | 0.4694941555946739 | 18.224315789473682 | 0.04039413025725802 | 0.014014750913273854 triton_per_fused__native_batch_norm_legi | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 | 41 | 0 | 0.06825669875995298 | 3.0384146341463416 | 0 | 0.002037513395819492 triton_poi_fused__native_batch_norm_legi | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 | 23 | 0 | 0.08808154712430301 | 2.3275652173913044 | 0 | 0.0026292999141582997 triton_per_fused__native_batch_norm_legi | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 | 40 | 0 | 0.18179321034952417 | 4.556825 | 0 | 0.005426662995508183 triton_poi_fused__native_batch_norm_legi | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 | 15 | 0 | 0.5887415155454232 | 2.783866666666667 | 0 | 0.017574373598370836 void cutlass::Kernel2<cutlass_80_tensoro | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 | 38 | 14242013806.264643 | 0.256592404353939 | 7.217631578947369 | 0.0730359682372546 | 0.007659474756834 triton_poi_fused__native_batch_norm_legi | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 | 21 | 0 | 0.5842860973430516 | 2.7779047619047623 | 0 | 0.017441376040091088 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 | 16 | 0 | 0.11509365173486417 | 3.5959375000000002 | 0 | 0.0034356313950705724 triton_poi_fused__native_batch_norm_legi | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 | 14 | 0 | 0.1704672000243914 | 2.4044285714285714 | 0 | 0.00508857313505646 triton_poi_fused__native_batch_norm_legi | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 | 58 | 0 | 2.307520779930795 | 8.190706896551722 | 0 | 0.06888121731136704 triton_per_fused__native_batch_norm_legi | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 | 29 | 0 | 0.037243248971881276 | 3.0277586206896556 | 0 | 0.001111738775280038 triton_poi_fused__native_batch_norm_legi | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 | 20 | 0 | 0.04741699795428918 | 2.2911500000000005 | 0 | 0.0014154327747549007 triton_per_fused__native_batch_norm_legi | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 | 25 | 0 | 0.13357016893727824 | 3.37536 | 0 | 0.003987169222008305 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 | 13 | 0 | 0.3089862268300253 | 2.8111538461538457 | 0 | 0.009223469457612694 triton_poi_fused__native_batch_norm_legi | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 | 17 | 0 | 0.3129385387909844 | 2.673 | 0 | 0.009341448919133863 triton_per_fused__native_batch_norm_legi | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 | 19 | 0 | 0.2215568162533158 | 3.8837368421052636 | 0 | 0.0066136363060691275 std::enable_if<!(false), void>::type int | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 | 23 | 504916805.19297093 | 1.0118296096314707 | 8.113913043478261 | 0.0025893169497075447 | 0.030203868944223014 triton_poi_fused_add_copy__38 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 | 56 | 0 | 0 | 2.132482142857143 | 0 | 0 triton_poi_fused_convolution_0 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 | 18 | 0 | 0.43458610794936897 | 2.773333333333334 | 0 | 0.012972719640279667 triton_poi_fused_convolution_1 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 | 17 | 0 | 0.028816312469162712 | 2.6145882352941174 | 0 | 0.0008601884319153051 void convolve_common_engine_float_NHWC<f | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 | 44 | 8641868995.31118 | 0.024730540008465626 | 25.87327272727273 | 0.04431727689903169 | 0.0007382250748795709 triton_per_fused__native_batch_norm_legi | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 | 12 | 0 | 0.6809930918986744 | 4.82675 | 0 | 0.020328151996975356 triton_per_fused__native_batch_norm_legi | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 | 14 | 0 | 0.02883030597936608 | 2.6651428571428575 | 0 | 0.0008606061486377935 triton_per_fused__native_batch_norm_legi | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 | 16 | 0 | 0.0014658988233201874 | 2.098 | 0 | 4.375817383045335e-05 triton_poi_fused__native_batch_norm_legi | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 | 13 | 0 | 0.9926297180284697 | 3.2367692307692306 | 0 | 0.02963073785159611 triton_poi_fused__native_batch_norm_legi | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 | 9 | 0 | 1.3008817095666507 | 3.0863333333333336 | 0 | 0.03883228983781048 void at::native::(anonymous namespace):: | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 | 98 | 0 | 0.09174335613709389 | 4.408520408163265 | 0 | 0.0027386076458833994 void at::native::vectorized_elementwise_ | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 | 7 | 0 | 0 | 1.7278571428571428 | 0 | 0 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/149697 Approved by: https://github.com/eellison, https://github.com/shunting314 |
|||
a4da1d4a47 |
[Graph Partition] support standalone_compile (#154698)
For graph partition, `write_get_raw_stream_header_once` is done once so the autotune code may not have the header. This PR additionally calls `write_get_raw_stream_header` in `codegen_device_guard_enter` before `get_raw_stream` is used. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154698 Approved by: https://github.com/oulgen |
|||
0c6c7780d9 |
[Inductor] Add envvar to disable decomposeK (#154421)
Summary: Add envvar to Inductor config to disable decomposeK autotuning choice Test Plan: `buck test 'fbcode//mode/opt' fbcode//caffe2/test/inductor:max_autotune -- --exact 'caffe2/test/inductor:max_autotune - test_max_autotune_decompose_k_dynamic_False_sizes2 (caffe2.test.inductor.test_max_autotune.TestMaxAutotune)' --run-disabled` Reviewed By: eellison Differential Revision: D75174823 Pull Request resolved: https://github.com/pytorch/pytorch/pull/154421 Approved by: https://github.com/eellison |
|||
d6e29bf875 |
Reflect back mutation if we clone misaligned tensors (#154442)
Fix for https://github.com/pytorch/pytorch/issues/152425 inductor specializes whether or not a tensor is 16-bit aligned on the first invocation. then, on subsequent invocations, if we inferred alignment but are passed a non-aligned tensor we clone the tensor. If we infer alignment, then run with unaligned, and mutate the input, we need to reflect back the mutation to the input. This pr adds back that mutation. We could have also been less aggressive about inferring alignment for mutated tensors, but that has a pretty perf hit.See the following benchmark: ``` import torch t = torch.rand(4096 * 4096, device="cuda", dtype=torch.float16) @torch.compile(dynamic=False) def foo(x): return x.add_(1) import triton print(triton.testing.do_bench(lambda: foo(t[:-1]))) torch._dynamo.reset() print(triton.testing.do_bench(lambda: foo(t[1:]))) ``` gives ``` 0.04063070610165596 0.07613472988113162 ``` So almost twice as slow for non-aligned tensors. Tensors changing alignment is a relatively rare case. In the future, we could considering a multi-kernel approach, or codegening a triton kernel that does most of the loads with aligned instructions, and a prologue/epilogue of un-alignment. But, it's yet to be seen this is a huge issue. Pull Request resolved: https://github.com/pytorch/pytorch/pull/154442 Approved by: https://github.com/bobrenjc93, https://github.com/bdhirsh |
|||
26471fc203 |
[aoti] Initial Metal support (#153959)
An example generated file: P1816629015 Pull Request resolved: https://github.com/pytorch/pytorch/pull/153959 Approved by: https://github.com/malfet, https://github.com/desertfire ghstack dependencies: #153964 |
|||
47a01f3efb |
Revert "[aoti] Initial Metal support (#153959)"
This reverts commit 28bcd9eb30336b370298dbe9677b95019882f2a8. Reverted https://github.com/pytorch/pytorch/pull/153959 on behalf of https://github.com/angelayi due to previous PR broke frl build ([comment](https://github.com/pytorch/pytorch/pull/153959#issuecomment-2901825315)) |
|||
28bcd9eb30 |
[aoti] Initial Metal support (#153959)
An example generated file: P1816629015 Pull Request resolved: https://github.com/pytorch/pytorch/pull/153959 Approved by: https://github.com/malfet, https://github.com/desertfire ghstack dependencies: #153964 |
|||
01bb249978 |
Revert "has_triton : Use the device interface for detecting Triton availability (#139171)"
This reverts commit 48bfe9afc70a98addd5aa738bf501c029e4a9285. Reverted https://github.com/pytorch/pytorch/pull/139171 on behalf of https://github.com/masnesral due to Performance regression for huggingface ([comment](https://github.com/pytorch/pytorch/pull/139171#issuecomment-2868939790)) |
|||
2d25e4d478 |
[1/n][Optimus][Auto-AC] Support activation quantization without scaling (#148380)
Summary: We enable the activation quantization in the forward pass, and users can customize the dtype they want to quantize. Test Plan: # unit test ``` buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/inductor:quantization -- test_activation_quantization_aten ``` Buck UI: https://www.internalfb.com/buck2/776d3911-bb86-4ac8-a527-540cf1510b9d Test UI: https://www.internalfb.com/intern/testinfra/testrun/4785074873051017 Network: Up: 4.3MiB Down: 42MiB (reSessionID-fef7e727-68b1-4645-a519-5652854df38d) Executing actions. Remaining 0/4 6.7s exec time total Command: test. Finished 2 local Time elapsed: 3:11.5s Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0 # E2E ### how to enable (you can overrite the dtype, if nothing given, the default is fp8) ``` post_grad_fusion_options={ "activation_quantization_aten_pass": {"quant_type": "torch.float8_e5m2"} }, ``` Differential Revision: D70522237 Pull Request resolved: https://github.com/pytorch/pytorch/pull/148380 Approved by: https://github.com/Mingming-Ding, https://github.com/Hahu803 |
|||
48bfe9afc7 |
has_triton : Use the device interface for detecting Triton availability (#139171)
This PR replaces the `has_triton()` global method which was previously used for this task. Pull Request resolved: https://github.com/pytorch/pytorch/pull/139171 Approved by: https://github.com/jansel, https://github.com/shink |
|||
bc11afd41f |
[Inductor] FX backend via Wrapper IR (#146942)
# Sub-PRs These PRs contain refactors from the main one. They should be reviewed and merged first. - https://github.com/pytorch/pytorch/pull/150458 - https://github.com/pytorch/pytorch/pull/152391 - https://github.com/pytorch/pytorch/pull/152587 # Feature The goals of this PR are twofold. ## Goal 1: Introduce Wrapper IR as an intermediate step in wrapper codegen. In addition to Triton/C++/Halide kernels, Inductor also generates "wrapper" code which allocates memory and calls the kernels. Originally, this wrapper code was fairly standard Python which resembled a user-written PyTorch program. Over time, various wrapper code generators have been added to accommodate things like AOTInductor, which prefers C++ code for static compilation. This complexity has bled into other parts of the codebase, as we now need if/else statements to choose between Python and C++ macros. (See an example [here](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/ir.py#L5515-L5522).) Since most of these code generation steps are conceptually identical across target languages, it seems reasonable to refactor them into some kind of intermediate representation which can be shared between the various backends. This might also make it easier to develop out-of-tree backends which cannot put their own macros in core Inductor components. This PR takes some initial steps to formalize Inductor's wrapper codegen by generalizing the existing Memory Planning IR into a fully fledged Wrapper IR. This is pretty much identical to the existing Memory Planning IR, but it supports a richer set of ops for things like kernel definitions and calls. This refactor could help encapsulate wrapper codegen. Ideally, we don't need to worry about direct Python/C++ codegen in the main compiler files such as `ir.py`, and can instead defer these to classes like `PythonWrapperCodegen` and `CppWrapperCpu`, which operate on the Wrapper IR. ## Goal 2: Convert Wrapper IR into FX IR. One of the main benefits of Wrapper IR is to enable more diverse Inductor backends. This PR introduces a converter from Wrapper IR into [FX IR](https://pytorch.org/docs/stable/fx.html), which is the intermediate representation most commonly used in PyTorch graph compilers. The purpose of this is to enable out-of-tree backends to consume Inductor's output in FX IR, which would hopefully make Inductor easier to leverage in novel compilers, hardware accelerators, etc. It's not trivial to generate Python or C++ code which Inductor can compile and run, and doing so may require changes to other core Inductor files, for the reasons outlined in the previous section. The goal of supporting FX output is to enable something like `torch.compile`'s [custom backend](https://pytorch.org/docs/stable/torch.compiler_custom_backends.html) system, in which an out-of-tree backend can receive an optimized FX graph from Inductor, and compile and run it however it likes. The typical users of this feature would likely not be part of PyTorch, and may or may not support running a kernel in eager mode. However, they can understand what `torch.empty_strided` means, compile and run Triton kernels, etc. So we just need to present them with an FX graph saying what code Inductor wants to run, which should be easier to analyze and transform in a third party system than Python or C++ source. Since FX IR is fairly stable, this mechanism should hopefully isolate third-party backends, hardware accelerators, etc. from the implementation details of Inductor, and vice versa. # Current status Things that seem to work: - Converted a lot of the most common Python codegen lines to Wrapper IR lines. - Handled the following cases, in addition to what was already in the Memory Planning IR: - Comments - Triton kernels - Extern/fallback kernels - Freeing tensors (`del buf0`) - MultiOutput - Graph outputs - ReinterpretView / StorageBox, for both call args and outputs. - FX conversion asserts that the program only contains Wrapper IR lines, and not strings of Python/C++ code. - Prototype FX converter which can handle some of the most common use cases. - Defining Triton kernels, and putting them in a side table using TorchDynamo's existing [utilities](https://dev-discuss.pytorch.org/t/higher-order-operators-2023-10/1565). - Calling wrapped Triton kernels. - Calling extern kernels and certain types of fallback kernels. - Support both `extern_kernels.*` and `aten.*`. - Support multi-output kernels like `torch.topk`. - Graphs with multiple inputs/outputs. - Training i.e. calling `Tensor.backward()` in a compiled function. - Graph breaks (training). - Run the `torch.fx.GraphModule` on GPU using the standard `__call__` method. This makes it easy to test the correctness of FX codegen. Things that don't work: - Both Wrapper IR and Wrapper -> FX coverage are currently best effort. There are still features which aren't captured as Wrapper IR lines, and fall back to plain strings. This representation is functionally correct but probably not rich enough to achieve the goals outlined in the previous sections. - Fallback kernels seem like the most difficult thing to fully cover, since they each define their own Python/C++ macros that would need to be converted to FX. - Size/alignment asserts are currently disabled via the config file. It's possible to generate FX IR for these, but it seems reasonable to defer these sanity checks to a later PR. - CommBuffer's and distributed communication are not yet supported. An earlier version of this PR attempted to implement this by calling `empty_strided_p2p`. However, building and testing distributed support seems non-trivial, so it's probably better to defer this. # Out-of-tree compilers With this PR, out of tree backends will be able to do further compilation on the FX graphs by subclassing `WrapperFxCodegen` and overriding the `compile_graph` function. This follows the same API as torch.compile's [custom backends](https://pytorch.org/docs/stable/torch.compiler_custom_backends.html), where the user simply returns a callable running the graph. The callable need not be a method of `GraphModule` or any other PyTorch class. See an example below. ``` from torch._inductor.codegen.wrapper_fxir import WrapperFxCodegen class MyCustomBackend(WrapperFxCodegen): def compile_graph(self, gm): # Add 1 to the graph's outputs def compiled_fn(*args): return [x + 1 for x in gm.graph.forward(*args)] return compiled_fn ``` # Example FX graphs This section contains some example FX graphs generated by Inductor. The correctness of these graphs was verified against eager mode by calling the corresponding `GraphModule`. Here's an FX graph calling a basic Triton kernel. Notice how outputs are allocated with `torch.empty_strided`, and the Triton kernel is called by reference to Dynamo's triton side table. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ((8,), (1,)), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(8,)], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg1_1, in_ptr1: %arg0_1, out_ptr0: %buf0, xnumel: 8, XBLOCK: 8}}) return (buf0,) ``` Here's a more complicated graph that calls a `torch.addmm` extern kernel. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %arg1_1 : [num_users=2] = placeholder[target=arg1_1] %buf0 : [num_users=3] = call_function[target=torch.empty_strided](args = ((), ()), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(1,)], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg1_1, out_ptr0: %buf0, xnumel: 1, r0_numel: 129, XBLOCK: 1}}) %buf2 : [num_users=2] = call_function[target=torch.empty_strided](args = ((129, 1), (1, 1)), kwargs = {dtype: torch.float32, device: cuda:0}) %addmm : [num_users=0] = call_function[target=torch.addmm](args = (%buf0, %arg0_1, %arg1_1), kwargs = {alpha: 1, beta: 1, out: %buf2}) %delete : [num_users=0] = call_function[target=torch._inductor.codegen.wrapper_fxir.delete](args = (%buf0,), kwargs = {}) return (buf2,) ``` Here's a graph which indexes into a tuple using `operator.getitem`. This is necessary to use the output of the `torch.topk` operation. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %buf0 : [num_users=3] = call_function[target=torch.ops.aten.topk.default](args = (%arg0_1, 2), kwargs = {}) %buf1 : [num_users=2] = call_function[target=operator.getitem](args = (%buf0, 0), kwargs = {}) %buf2 : [num_users=2] = call_function[target=operator.getitem](args = (%buf0, 1), kwargs = {}) %delete : [num_users=0] = call_function[target=torch._inductor.codegen.wrapper_fxir.delete](args = (%buf0,), kwargs = {}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(2,)], tma_descriptor_metadata: {}, kwargs: {in_out_ptr0: %buf1, xnumel: 2, XBLOCK: 2}}) %triton_kernel_wrapper_mutation_1 : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 1, constant_args_idx: 1, grid: [(2,)], tma_descriptor_metadata: {}, kwargs: {in_out_ptr0: %buf2, xnumel: 2, XBLOCK: 2}}) return (buf1, buf2) ``` Here's a graph that reinterprets an output tensor using `torch.as_strided`. This is one way to handle Inductor's `ReinterpretView` op. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ((2, 4), (4, 1)), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(8,)], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg0_1, in_ptr1: %arg1_1, out_ptr0: %buf0, xnumel: 8, XBLOCK: 8}}) %buf0_view_buf0_0 : [num_users=1] = call_function[target=torch.as_strided](args = (%buf0, (8,), (1,), 0), kwargs = {}) return (buf0_view_buf0_0,) ``` Here's a graph with dynamic shapes. This one is a little bit funky. Inductor provides a graph input for each shape symbol, which we map to a placeholder, in this example `s6`. Then, shape expressions in the generated code can refer to the symbol `s6`. The size hint for `s6` is stored in `node.meta["val"]` where `node` is the placeholder defining it. This works out in the generated python code because the placeholder defines a Python variable with the name `s6`. ``` graph(): %s6 : [num_users=0] = placeholder[target=s6] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %arg2_1 : [num_users=1] = placeholder[target=arg2_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ((s6,), (1,)), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [[-(((-s6)//8)), 1, 1]], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg2_1, in_ptr1: %arg1_1, out_ptr0: %buf0, xnumel: s6, XBLOCK: 8}}) return buf0 ``` Here's another graph, this time with dynamic shapes and strides. The grid expression is more complex since the numel is a product of dimensions. ``` graph(): %s10 : [num_users=0] = placeholder[target=s10] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %arg2_1 : [num_users=1] = placeholder[target=arg2_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ([s10, s10], [s10, 1]), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [[-(((s10**2)//(-64))), 1, 1]], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg2_1, in_ptr1: %arg1_1, out_ptr0: %buf0, xnumel: s10**2, XBLOCK: 64}}) return buf0 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/146942 Approved by: https://github.com/jansel |
|||
e3064bf0e3 |
[inductor] Allow num_program specification for TMA workspace (#152844)
Summary: Allow TMA workspace creation allow specification for `num_programs`, which defaults to `num_sms` when not specified. We need a total `num_programs * num_tma_descriptors` no. of descriptors for a kernel. Test Plan: CI. Differential Revision: D74189599 Pull Request resolved: https://github.com/pytorch/pytorch/pull/152844 Approved by: https://github.com/drisspg |
|||
99dac7005f |
Revert "[Inductor] FX backend via Wrapper IR (#146942)"
This reverts commit a7691140a0fed33a838dda11e28ff7da393d9180.
Reverted https://github.com/pytorch/pytorch/pull/146942 on behalf of https://github.com/malfet due to Looks like it indeed breaks lint, see
|
|||
a7691140a0 |
[Inductor] FX backend via Wrapper IR (#146942)
# Sub-PRs These PRs contain refactors from the main one. They should be reviewed and merged first. - https://github.com/pytorch/pytorch/pull/150458 - https://github.com/pytorch/pytorch/pull/152391 - https://github.com/pytorch/pytorch/pull/152587 # Feature The goals of this PR are twofold. ## Goal 1: Introduce Wrapper IR as an intermediate step in wrapper codegen. In addition to Triton/C++/Halide kernels, Inductor also generates "wrapper" code which allocates memory and calls the kernels. Originally, this wrapper code was fairly standard Python which resembled a user-written PyTorch program. Over time, various wrapper code generators have been added to accommodate things like AOTInductor, which prefers C++ code for static compilation. This complexity has bled into other parts of the codebase, as we now need if/else statements to choose between Python and C++ macros. (See an example [here](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/ir.py#L5515-L5522).) Since most of these code generation steps are conceptually identical across target languages, it seems reasonable to refactor them into some kind of intermediate representation which can be shared between the various backends. This might also make it easier to develop out-of-tree backends which cannot put their own macros in core Inductor components. This PR takes some initial steps to formalize Inductor's wrapper codegen by generalizing the existing Memory Planning IR into a fully fledged Wrapper IR. This is pretty much identical to the existing Memory Planning IR, but it supports a richer set of ops for things like kernel definitions and calls. This refactor could help encapsulate wrapper codegen. Ideally, we don't need to worry about direct Python/C++ codegen in the main compiler files such as `ir.py`, and can instead defer these to classes like `PythonWrapperCodegen` and `CppWrapperCpu`, which operate on the Wrapper IR. ## Goal 2: Convert Wrapper IR into FX IR. One of the main benefits of Wrapper IR is to enable more diverse Inductor backends. This PR introduces a converter from Wrapper IR into [FX IR](https://pytorch.org/docs/stable/fx.html), which is the intermediate representation most commonly used in PyTorch graph compilers. The purpose of this is to enable out-of-tree backends to consume Inductor's output in FX IR, which would hopefully make Inductor easier to leverage in novel compilers, hardware accelerators, etc. It's not trivial to generate Python or C++ code which Inductor can compile and run, and doing so may require changes to other core Inductor files, for the reasons outlined in the previous section. The goal of supporting FX output is to enable something like `torch.compile`'s [custom backend](https://pytorch.org/docs/stable/torch.compiler_custom_backends.html) system, in which an out-of-tree backend can receive an optimized FX graph from Inductor, and compile and run it however it likes. The typical users of this feature would likely not be part of PyTorch, and may or may not support running a kernel in eager mode. However, they can understand what `torch.empty_strided` means, compile and run Triton kernels, etc. So we just need to present them with an FX graph saying what code Inductor wants to run, which should be easier to analyze and transform in a third party system than Python or C++ source. Since FX IR is fairly stable, this mechanism should hopefully isolate third-party backends, hardware accelerators, etc. from the implementation details of Inductor, and vice versa. # Current status Things that seem to work: - Converted a lot of the most common Python codegen lines to Wrapper IR lines. - Handled the following cases, in addition to what was already in the Memory Planning IR: - Comments - Triton kernels - Extern/fallback kernels - Freeing tensors (`del buf0`) - MultiOutput - Graph outputs - ReinterpretView / StorageBox, for both call args and outputs. - FX conversion asserts that the program only contains Wrapper IR lines, and not strings of Python/C++ code. - Prototype FX converter which can handle some of the most common use cases. - Defining Triton kernels, and putting them in a side table using TorchDynamo's existing [utilities](https://dev-discuss.pytorch.org/t/higher-order-operators-2023-10/1565). - Calling wrapped Triton kernels. - Calling extern kernels and certain types of fallback kernels. - Support both `extern_kernels.*` and `aten.*`. - Support multi-output kernels like `torch.topk`. - Graphs with multiple inputs/outputs. - Training i.e. calling `Tensor.backward()` in a compiled function. - Graph breaks (training). - Run the `torch.fx.GraphModule` on GPU using the standard `__call__` method. This makes it easy to test the correctness of FX codegen. Things that don't work: - Both Wrapper IR and Wrapper -> FX coverage are currently best effort. There are still features which aren't captured as Wrapper IR lines, and fall back to plain strings. This representation is functionally correct but probably not rich enough to achieve the goals outlined in the previous sections. - Fallback kernels seem like the most difficult thing to fully cover, since they each define their own Python/C++ macros that would need to be converted to FX. - Size/alignment asserts are currently disabled via the config file. It's possible to generate FX IR for these, but it seems reasonable to defer these sanity checks to a later PR. - CommBuffer's and distributed communication are not yet supported. An earlier version of this PR attempted to implement this by calling `empty_strided_p2p`. However, building and testing distributed support seems non-trivial, so it's probably better to defer this. # Out-of-tree compilers With this PR, out of tree backends will be able to do further compilation on the FX graphs by subclassing `WrapperFxCodegen` and overriding the `compile_graph` function. This follows the same API as torch.compile's [custom backends](https://pytorch.org/docs/stable/torch.compiler_custom_backends.html), where the user simply returns a callable running the graph. The callable need not be a method of `GraphModule` or any other PyTorch class. See an example below. ``` from torch._inductor.codegen.wrapper_fxir import WrapperFxCodegen class MyCustomBackend(WrapperFxCodegen): def compile_graph(self, gm): # Add 1 to the graph's outputs def compiled_fn(*args): return [x + 1 for x in gm.graph.forward(*args)] return compiled_fn ``` # Example FX graphs This section contains some example FX graphs generated by Inductor. The correctness of these graphs was verified against eager mode by calling the corresponding `GraphModule`. Here's an FX graph calling a basic Triton kernel. Notice how outputs are allocated with `torch.empty_strided`, and the Triton kernel is called by reference to Dynamo's triton side table. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ((8,), (1,)), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(8,)], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg1_1, in_ptr1: %arg0_1, out_ptr0: %buf0, xnumel: 8, XBLOCK: 8}}) return (buf0,) ``` Here's a more complicated graph that calls a `torch.addmm` extern kernel. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %arg1_1 : [num_users=2] = placeholder[target=arg1_1] %buf0 : [num_users=3] = call_function[target=torch.empty_strided](args = ((), ()), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(1,)], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg1_1, out_ptr0: %buf0, xnumel: 1, r0_numel: 129, XBLOCK: 1}}) %buf2 : [num_users=2] = call_function[target=torch.empty_strided](args = ((129, 1), (1, 1)), kwargs = {dtype: torch.float32, device: cuda:0}) %addmm : [num_users=0] = call_function[target=torch.addmm](args = (%buf0, %arg0_1, %arg1_1), kwargs = {alpha: 1, beta: 1, out: %buf2}) %delete : [num_users=0] = call_function[target=torch._inductor.codegen.wrapper_fxir.delete](args = (%buf0,), kwargs = {}) return (buf2,) ``` Here's a graph which indexes into a tuple using `operator.getitem`. This is necessary to use the output of the `torch.topk` operation. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %buf0 : [num_users=3] = call_function[target=torch.ops.aten.topk.default](args = (%arg0_1, 2), kwargs = {}) %buf1 : [num_users=2] = call_function[target=operator.getitem](args = (%buf0, 0), kwargs = {}) %buf2 : [num_users=2] = call_function[target=operator.getitem](args = (%buf0, 1), kwargs = {}) %delete : [num_users=0] = call_function[target=torch._inductor.codegen.wrapper_fxir.delete](args = (%buf0,), kwargs = {}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(2,)], tma_descriptor_metadata: {}, kwargs: {in_out_ptr0: %buf1, xnumel: 2, XBLOCK: 2}}) %triton_kernel_wrapper_mutation_1 : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 1, constant_args_idx: 1, grid: [(2,)], tma_descriptor_metadata: {}, kwargs: {in_out_ptr0: %buf2, xnumel: 2, XBLOCK: 2}}) return (buf1, buf2) ``` Here's a graph that reinterprets an output tensor using `torch.as_strided`. This is one way to handle Inductor's `ReinterpretView` op. ``` graph(): %arg0_1 : [num_users=1] = placeholder[target=arg0_1] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ((2, 4), (4, 1)), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [(8,)], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg0_1, in_ptr1: %arg1_1, out_ptr0: %buf0, xnumel: 8, XBLOCK: 8}}) %buf0_view_buf0_0 : [num_users=1] = call_function[target=torch.as_strided](args = (%buf0, (8,), (1,), 0), kwargs = {}) return (buf0_view_buf0_0,) ``` Here's a graph with dynamic shapes. This one is a little bit funky. Inductor provides a graph input for each shape symbol, which we map to a placeholder, in this example `s6`. Then, shape expressions in the generated code can refer to the symbol `s6`. The size hint for `s6` is stored in `node.meta["val"]` where `node` is the placeholder defining it. This works out in the generated python code because the placeholder defines a Python variable with the name `s6`. ``` graph(): %s6 : [num_users=0] = placeholder[target=s6] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %arg2_1 : [num_users=1] = placeholder[target=arg2_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ((s6,), (1,)), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [[-(((-s6)//8)), 1, 1]], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg2_1, in_ptr1: %arg1_1, out_ptr0: %buf0, xnumel: s6, XBLOCK: 8}}) return buf0 ``` Here's another graph, this time with dynamic shapes and strides. The grid expression is more complex since the numel is a product of dimensions. ``` graph(): %s10 : [num_users=0] = placeholder[target=s10] %arg1_1 : [num_users=1] = placeholder[target=arg1_1] %arg2_1 : [num_users=1] = placeholder[target=arg2_1] %buf0 : [num_users=2] = call_function[target=torch.empty_strided](args = ([s10, s10], [s10, 1]), kwargs = {dtype: torch.float32, device: cuda:0}) %triton_kernel_wrapper_mutation : [num_users=0] = call_function[target=torch.ops.higher_order.triton_kernel_wrapper_mutation](args = (), kwargs = {kernel_idx: 0, constant_args_idx: 0, grid: [[-(((s10**2)//(-64))), 1, 1]], tma_descriptor_metadata: {}, kwargs: {in_ptr0: %arg2_1, in_ptr1: %arg1_1, out_ptr0: %buf0, xnumel: s10**2, XBLOCK: 64}}) return buf0 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/146942 Approved by: https://github.com/jansel |
|||
84aa0985fb |
[Inductor] Add decomposeK as an autotuning choice for mm (#150654)
As a result of adding subgraph as a choice to inductor https://github.com/pytorch/pytorch/pull/149761 and enabling FP32 output from PyTorch GEMMs from FP16/BF16 inputs: https://github.com/pytorch/pytorch/pull/150812, this PR enables decompose_k as an autotuning choice for Inductor in generating the fastest matmuls with Triton. DecomposeK is currently only enabled for `torch.compile`. Followups: * decompose_k does not currently support epilogue fusion, which will take some work to enable * Enable autotuning the bmm with Triton Templates as well without requiring tons of more compile time, async compilation. Anecdotal evidence shows that Triton BMM performs better usually than aten BMM * Add for addmm * Enable for Inference and AOTI Below are the results of running TritonBench for Split-K shapes, comparing the aten performance versus pt2_triton, which now autotunes on decompose_k, seeing >10% speedup compared to aten on average, and for some shapes over 3x the performance of the best Triton mm previously: <img width="929" alt="Screenshot 2025-04-28 at 9 15 39 PM" src="https://github.com/user-attachments/assets/27d85bbc-4f3a-43a6-a8fa-d4a5bbb8c999" /> TorchInductor Benchmark Dashboard: <img width="1727" alt="Screenshot 2025-04-30 at 2 02 53 PM" src="https://github.com/user-attachments/assets/4acd7ffc-407f-4cfd-98bb-2e3d8b1f00b3" /> We see speedups across all runs for training. Compile time increased as expected, with more `mm` options to tune over. Differential Revision: [D73820115](https://our.internmc.facebook.com/intern/diff/D73820115) Pull Request resolved: https://github.com/pytorch/pytorch/pull/150654 Approved by: https://github.com/eellison |
|||
7c3e679ddd |
Revert "[Inductor] Add decomposeK as an autotuning choice for mm (#150654)"
This reverts commit fdcfc6a61a2146c7c961073e029ead633113eb9a.
Reverted https://github.com/pytorch/pytorch/pull/150654 on behalf of https://github.com/wdvr due to Failing ROCM tests: inductor/test_subgraph_choice.py::TestSubgraphChoice::test_subgraph_decompose_k [GH job link](https://github.com/pytorch/pytorch/actions/runs/14786111108/job/41515742446) [HUD commit link](
|
|||
fdcfc6a61a |
[Inductor] Add decomposeK as an autotuning choice for mm (#150654)
As a result of adding subgraph as a choice to inductor https://github.com/pytorch/pytorch/pull/149761 and enabling FP32 output from PyTorch GEMMs from FP16/BF16 inputs: https://github.com/pytorch/pytorch/pull/150812, this PR enables decompose_k as an autotuning choice for Inductor in generating the fastest matmuls with Triton. DecomposeK is currently only enabled for `torch.compile`. Followups: * decompose_k does not currently support epilogue fusion, which will take some work to enable * Enable autotuning the bmm with Triton Templates as well without requiring tons of more compile time, async compilation. Anecdotal evidence shows that Triton BMM performs better usually than aten BMM * Add for addmm * Enable for Inference and AOTI Below are the results of running TritonBench for Split-K shapes, comparing the aten performance versus pt2_triton, which now autotunes on decompose_k, seeing >10% speedup compared to aten on average, and for some shapes over 3x the performance of the best Triton mm previously: <img width="929" alt="Screenshot 2025-04-28 at 9 15 39 PM" src="https://github.com/user-attachments/assets/27d85bbc-4f3a-43a6-a8fa-d4a5bbb8c999" /> TorchInductor Benchmark Dashboard: <img width="1727" alt="Screenshot 2025-04-30 at 2 02 53 PM" src="https://github.com/user-attachments/assets/4acd7ffc-407f-4cfd-98bb-2e3d8b1f00b3" /> We see speedups across all runs for training. Compile time increased as expected, with more `mm` options to tune over. Differential Revision: [D73820115](https://our.internmc.facebook.com/intern/diff/D73820115) Pull Request resolved: https://github.com/pytorch/pytorch/pull/150654 Approved by: https://github.com/eellison |
|||
a1f6d85b36 |
[Cutlass] Fixes for e2e compilation in arg rendering (#151405)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151405 Approved by: https://github.com/eellison ghstack dependencies: #152305, #152306, #150905 |
|||
c8b4a39d73 |
Add precedence to the infix printing done by sympy_str. (#151920)
Add precedence to the infix printing done by sympy_str. Without this change sympy_str will print the same string for both `a+b*(c+d)` and `(a+b)*(c+d)`. While there I also cleaned up the printing for `-a` and `a - b`. Added some tests. Pull Request resolved: https://github.com/pytorch/pytorch/pull/151920 Approved by: https://github.com/jansel |