Commit Graph

104 Commits

Author SHA1 Message Date
331b7cc054 Fix double dispatch to Python for detach (#163671)
This fixes #71725.

Differential Revision: [D83857880](https://our.internmc.facebook.com/intern/diff/D83857880)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163671
Approved by: https://github.com/ezyang, https://github.com/albanD
2025-10-15 17:24:50 +00:00
c733072874 Fix IValue from SymBool on big-endian system (#163647)
Skip test_compiled_autograd_attribution on s390x

It fails both on s390x and x86_64 at least under some circumstances. Disable it for now until on s390x until it works reliably.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/163647
Approved by: https://github.com/malfet
2025-10-14 15:07:48 +00:00
267348fe7f Revert "Fix double dispatch to Python for detach (#163671)"
This reverts commit a3e3efe474bef63940ded803e78bb2a382681f1e.

Reverted https://github.com/pytorch/pytorch/pull/163671 on behalf of https://github.com/seemethere due to We should've reverted this when we decided to revert https://github.com/pytorch/pytorch/pull/164691 since they were actually stacked ([comment](https://github.com/pytorch/pytorch/pull/163671#issuecomment-3400009953))
2025-10-14 03:55:36 +00:00
a3e3efe474 Fix double dispatch to Python for detach (#163671)
This fixes #71725.

Differential Revision: [D83857880](https://our.internmc.facebook.com/intern/diff/D83857880)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/163671
Approved by: https://github.com/ezyang, https://github.com/albanD
2025-10-13 16:10:17 +00:00
8627454c84 Add local file path to inductor_output_code trace metadata (#160920)
## Summary
- include local file path in `inductor_output_code` structured trace metadata
- adjust structured trace tests for new `file_path` field

## Testing
- `python test/dynamo/test_structured_trace.py StructuredTraceTest.test_compile_id_serialization_deserialization`
- `lintrunner -a torch/_inductor/codecache.py torch/_inductor/graph.py test/dynamo/test_structured_trace.py` *(fails: MYPY failure)*

------
https://chatgpt.com/codex/tasks/task_e_68a2b02b54ec8323ae820120605a9f1c

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160920
Approved by: https://github.com/oulgen
2025-09-18 18:39:46 +00:00
92c2daebb6 Add inductor provenance tracking artifacts to cache (#161440)
Summary:

- Add inductor provenance tracking artifacts to cache
- Update the tlparse version pin to `0.4.0`. The old tlparse version errors out on the new tlparse output. The lowest tlparse version that works is `0.3.42`.

tlparse error:
```
thread 'main' panicked at src/parsers.rs:671:71:
called `Result::unwrap()` on an `Err` value: Error("EOF while parsing a value", line: 1, column: 0)
stack backtrace:
   0:     0x55e4ff1c7f00 - <std::sys::backtrace::BacktraceLock::print::DisplayBacktrace as core::fmt::Display>::fmt::h6d42cc84fc840290
   1:     0x55e4ff1ee503 - core::fmt::write::h5af61a909e3ec64d
   2:     0x55e4ff1c4c33 - std::io::Write::write_fmt::h5a7b54aa6e4a315d
   3:     0x55e4ff1c7d52 - std::sys::backtrace::BacktraceLock::print::h555579e7396c26ac
   4:     0x55e4ff1c8caf - std::panicking::default_hook::{{closure}}::h9128866118196224
   5:     0x55e4ff1c8b1a - std::panicking::default_hook::h52e9e7314e0255f6
   6:     0x55e4ff1c9652 - std::panicking::rust_panic_with_hook::h541791bcc774ef34
   7:     0x55e4ff1c93fa - std::panicking::begin_panic_handler::{{closure}}::h6479a2f0137c7d19
   8:     0x55e4ff1c8419 - std::sys::backtrace::__rust_end_short_backtrace::ha04e7c0fc61ded91
   9:     0x55e4ff1c908d - rust_begin_unwind
  10:     0x55e4fef7a030 - core::panicking::panic_fmt::h5764ee7030b7a73d
  11:     0x55e4fef7a406 - core::result::unwrap_failed::h3ff7104a9ace307a
  12:     0x55e4fefb3c56 - <tlparse::parsers::ArtifactParser as tlparse::parsers::StructuredLogParser>::parse::h20bc51a17ffc494a
  13:     0x55e4fef9669a - tlparse::run_parser::h20c7729f151eec62
  14:     0x55e4fef99a1b - tlparse::parse_path::he4892147f47fbade
  15:     0x55e4fef7c760 - tlparse::main::hdc05613b32f4f53b
  16:     0x55e4fef89263 - std::sys::backtrace::__rust_begin_short_backtrace::h15f188f3edf42596
  17:     0x55e4fef8827d - std::rt::lang_start::{{closure}}::he2c21e32a442538e
  18:     0x55e4ff1be0f0 - std::rt::lang_start_internal::h15895544e2012228
  19:     0x55e4fef83975 - main
  20:     0x7f0b3662a610 - __libc_start_call_main
  21:     0x7f0b3662a6c0 - __libc_start_main_alias_2
  22:     0x55e4fef7a610 - <unknown>
  23:                0x0 - <unknown>
```

Test Plan:
```
buck run mode/dev-nosan fbcode//caffe2/test/inductor:provenance_tracing -- -r  test_kernel_information_generation
python test/dynamo/test_structured_trace.py -k test_chromium_event
```

Differential Revision: D80976585

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161440
Approved by: https://github.com/oulgen
2025-08-28 01:16:02 +00:00
ec585ceab4 [inductor] structured-log graph execution order + test (#160448)
Summary:

- Emit a structured trace per compiled graph execution to reconstruct execution order in TLParse.
- Adds debug.log_graph_execution(name) called from `CompiledFxGraph.__call__`, producing an artifact named inductor_graph_execution with payload {"graph": "graph_<id>"}.

Testing:
- Add inline test to verify structure and output

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160448
Approved by: https://github.com/xmfan
2025-08-27 18:12:46 +00:00
4a1aca11c2 Revert "[inductor] structured-log graph execution order + test (#160448)"
This reverts commit 995397d47a0e27394ee1010f158e181eb304100a.

Reverted https://github.com/pytorch/pytorch/pull/160448 on behalf of https://github.com/atalman due to internal failure please see associated diff ([comment](https://github.com/pytorch/pytorch/pull/160448#issuecomment-3223939035))
2025-08-26 12:20:37 +00:00
995397d47a [inductor] structured-log graph execution order + test (#160448)
Summary:

- Emit a structured trace per compiled graph execution to reconstruct execution order in TLParse.
- Adds debug.log_graph_execution(name) called from `CompiledFxGraph.__call__`, producing an artifact named inductor_graph_execution with payload {"graph": "graph_<id>"}.

Testing:
- Add inline test to verify structure and output

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160448
Approved by: https://github.com/xmfan
2025-08-25 20:12:18 +00:00
9a41570199 [rfc] add hint_override kwarg to mark_dynamic (#161007)
The motivation for this change can be seen through the following example:

```
import torch

GPU_TYPE = "cuda"

@torch.compile
def no_override(x):
    return x.sum(dim=0)

@torch.compile
def override(x):
    return x.sum(dim=0)

x_small = torch.randn(4096, 512, device=GPU_TYPE)
no_override(x_small)
torch._dynamo.decorators.mark_dynamic(x_small, 0, hint_override=4096 * 1000)
override(x_small)
```

Previously, when reductions were split, codegen relied only on the first observed shape. With a small input, this resulted in a small split size:

```
def triton_red_fused_sum_0(in_ptr0, out_ptr0, ks0, xnumel, r0_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr):
    xnumel = 16384
    rnumel = r0_numel
```

With the new scheme, inductor honors hint_override during codegen, producing larger and more appropriate split sizes:

```
def triton_red_fused_sum_0(in_ptr0, out_ptr0, ks0, xnumel, r0_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr):
    xnumel = 1024000
    rnumel = r0_numel
```

This addresses a broader problem with dynamism: performance and numerics previously depended on whichever shape was seen first. For example:

```
f(s0) -> f(s2)
f(s1) -> f(s2)
```

could generate different kernels. With the new approach, an explicit override pins the chosen configuration:

```
f(s0, hint_override=s0) -> f(s2)
f(s1, hint_override=s0) -> f(s2)
```

ensuring consistent kernel generation regardless of input order.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161007
Approved by: https://github.com/jansel
2025-08-21 02:22:52 +00:00
90ea9ccefe Revert "[rfc] add hint_override kwarg to mark_dynamic (#161007)"
This reverts commit 0533ff2ccba7e77622ac3c6758f1032bdc10feff.

Reverted https://github.com/pytorch/pytorch/pull/161007 on behalf of https://github.com/jeffdaily due to failing on both cuda and rocm ([comment](https://github.com/pytorch/pytorch/pull/161007#issuecomment-3206893756))
2025-08-20 15:31:33 +00:00
0533ff2ccb [rfc] add hint_override kwarg to mark_dynamic (#161007)
The motivation for this change can be seen through the following example:

```
import torch

GPU_TYPE = "cuda"

@torch.compile
def no_override(x):
    return x.sum(dim=0)

@torch.compile
def override(x):
    return x.sum(dim=0)

x_small = torch.randn(4096, 512, device=GPU_TYPE)
no_override(x_small)
torch._dynamo.decorators.mark_dynamic(x_small, 0, hint_override=4096 * 1000)
override(x_small)
```

Previously, when reductions were split, codegen relied only on the first observed shape. With a small input, this resulted in a small split size:

```
def triton_per_fused_sum_1(in_ptr0, out_ptr0, xnumel, r0_numel, XBLOCK : tl.constexpr):
    xnumel = 512
    r0_numel = 32
```

With the new scheme, inductor honors hint_override during codegen, producing larger and more appropriate split sizes:

```
def triton_red_fused_sum_0(in_ptr0, out_ptr0, xnumel, r0_numel, XBLOCK : tl.constexpr, R0_BLOCK : tl.constexpr):
    xnumel = 16384
    r0_numel = 128
```

This addresses a broader problem with dynamism: performance and numerics previously depended on whichever shape was seen first. For example:

```
f(s0) -> f(s2)
f(s1) -> f(s2)
```

could generate different kernels. With the new approach, an explicit override pins the chosen configuration:

```
f(s0, hint_override=s0) -> f(s2)
f(s1, hint_override=s0) -> f(s2)
```

ensuring consistent kernel generation regardless of input order.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/161007
Approved by: https://github.com/jansel
2025-08-20 07:51:09 +00:00
512fc768e9 Add tlparse artifact for joint graph passes (for inference & non-freezing only) (#160589)
Summary:
Joint graph passes run several FX passes which can modify the graph before it hits Inductor.

There's three usages of joint graph passes:
- **for inference & not freezing** (we add structured loggings only for this)
- for inference & freezing
- for fw/bw split

Rollback Plan:

Reviewed By: yushangdi

Differential Revision: D80130321

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160589
Approved by: https://github.com/yushangdi
2025-08-19 23:18:40 +00:00
c699668009 [inductor] TLParse tensor metadata logging + test (#160132)
Summary:
- Add TLParse artifact logging per op with output tensor shape, stride, and dtype for cross-rank aggregation.

Testing:
- Add test to verify structure and contents of tlparse artifiact

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160132
Approved by: https://github.com/xmfan
2025-08-17 04:27:49 +00:00
26297c27e2 Revert "[inductor] TLParse tensor metadata logging + test (#160132)"
This reverts commit 2603e40be5fa4a66301e6654e34a82a67f2e4913.

Reverted https://github.com/pytorch/pytorch/pull/160132 on behalf of https://github.com/clee2000 due to broke lint [GH job link](https://github.com/pytorch/pytorch/actions/runs/17010600949/job/48226137423) [HUD commit link](2603e40be5).  landrace with another PR that changed some had_cuda related things ([comment](https://github.com/pytorch/pytorch/pull/160132#issuecomment-3193969792))
2025-08-16 23:47:03 +00:00
2603e40be5 [inductor] TLParse tensor metadata logging + test (#160132)
Summary:
- Add TLParse artifact logging per op with output tensor shape, stride, and dtype for cross-rank aggregation.

Testing:
- Add test to verify structure and contents of tlparse artifiact

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160132
Approved by: https://github.com/xmfan
ghstack dependencies: #160260
2025-08-16 16:37:18 +00:00
fc80f6859e Fix collective schedule logging and runtime tests (#160260)
Summary:

- Fix collective schedule logging so that only logs when collectives present
- Fix runtime estimate test to check if each op has a number value

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160260
Approved by: https://github.com/Skylion007
2025-08-11 20:58:52 +00:00
af10f1f86c Fix requires_cuda to requires_cuda_and_triton (#160222)
Fixes ##159399

Pull Request resolved: https://github.com/pytorch/pytorch/pull/160222
Approved by: https://github.com/janeyx99
2025-08-10 07:05:52 +00:00
50f23ff6f8 rename-HAS_CUDA-to-HAS_CUDA_AND_TRITON (#159883)
Fixes #159399
"Modified torch.testing._internal.inductor_utils and test/inductor"

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159883
Approved by: https://github.com/janeyx99
2025-08-08 15:44:52 +00:00
8034b2a732 [inductor] Add TLParse artifact for logging runtime of collective and compute ops (#159730)
Summary:

- debug.py: Added log_runtime_estimates() function to dump runtime estimation data as structured tlparse artifacts in JSON format
- test_structured_trace.py: Added comprehensive test coverage with testing compute and collective ops

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159730
Approved by: https://github.com/yushangdi
ghstack dependencies: #159190
2025-08-05 22:06:32 +00:00
9f8cfe7476 [Dynamo] Fix arg ordering in tf modes (#159707)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159707
Approved by: https://github.com/zou3519
2025-08-05 01:43:21 +00:00
85e74d5ace [inductor] Add logging for distributed collective ops for multi‑rank diagnostics (#159190)
This change introduces structured logging of the collective communication schedule, enabling downstream tools (e.g. TLParse) to ingest and analyze per‑rank collective‐order information for multi‑rank jobs.

- Iterates over scheduler.nodes, filters for _CollectiveKernel nodes
- Extracts each op’s python_kernel_name
- Emits a structured JSON payload under the inductor_collective_schedule artifact name
- Dumps the full schedule list to collective_schedule.json via the PyTorch trace‑structured artifact
- Added comprehensive unit tests for collective schedule tracing: Created test_collective_schedule_empty() and test_collective_schedule_real() tests to verify structured trace logging works correctly for both empty collective schedules and real collective operations (like all_reduce and wait_tensor from _c10d_functional ops).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159190
Approved by: https://github.com/yushangdi, https://github.com/xmfan
2025-08-01 21:51:42 +00:00
490cb3f1a4 Revert "[inductor] Add logging for distributed collective ops for multi‑rank diagnostics (#159190)"
This reverts commit bb62e1f769ef51e2ec149d7256c135d09425aaa0.

Reverted https://github.com/pytorch/pytorch/pull/159190 on behalf of https://github.com/clee2000 due to broke [GH job link](https://github.com/pytorch/pytorch/actions/runs/16658705097/job/47150840171) [HUD commit link](bb62e1f769) on mac ([comment](https://github.com/pytorch/pytorch/pull/159190#issuecomment-3141513921))
2025-07-31 22:22:13 +00:00
bb62e1f769 [inductor] Add logging for distributed collective ops for multi‑rank diagnostics (#159190)
This change introduces structured logging of the collective communication schedule, enabling downstream tools (e.g. TLParse) to ingest and analyze per‑rank collective‐order information for multi‑rank jobs.

- Iterates over scheduler.nodes, filters for _CollectiveKernel nodes
- Extracts each op’s python_kernel_name
- Emits a structured JSON payload under the inductor_collective_schedule artifact name
- Dumps the full schedule list to collective_schedule.json via the PyTorch trace‑structured artifact
- Added comprehensive unit tests for collective schedule tracing: Created test_collective_schedule_empty() and test_collective_schedule_real() tests to verify structured trace logging works correctly for both empty collective schedules and real collective operations (like all_reduce and wait_tensor from _c10d_functional ops).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/159190
Approved by: https://github.com/yushangdi, https://github.com/xmfan
2025-07-31 19:58:07 +00:00
82a1ee1135 Refactor Provenance Tracking (#158399)
Summary:
As inductor provenance tracking is getting more use cases, we want to separate the inductor provenance tracking guarding flag from the general `trace.enabled`, so we can enable provenance tracking without all the overhead of `trace.enabled`

- change the guard flag from `trace.enabled` to `trace.provenance_tracking`.  It is turned on by either `TORCH_COMPILE_DEBUG=1` or `INDUCTOR_PROVENANCE=1`.
- Move the provenance tracking logic and variables out of DebugContext, because DebugContext is only enabled with `trace.enabled`. Since the variables are now global variables, added `reset_provenance_globals()` context manager to reset them for each `compile_fx()` call.
- Move `set_kernel_post_grad_provenance_tracing` from `util.py` to `debug.py` so now all provenance related logic is in `debug.py`.

In the future, if we want to enable it further, we can change the provenance tracking flag to be enabled when `TORCH_TRACE` is set. I think we should do that in a separate PR, so it's easier to revert if this flag change creates any problem.

See more motivation in internal Diff

Test Plan:
```
buck2 run mode/dev-nosan fbcode//caffe2/test:fx -- -r test_graph_transform_observer
buck run mode/dev-nosan  fbcode//caffe2/test:fx -- -r graph_provenance
buck2 run mode/dev-nosan fbcode//caffe2/test/inductor:provenance_tracing
```

Differential Revision: D78287976

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158399
Approved by: https://github.com/angelayi
2025-07-17 00:23:00 +00:00
7afb834f93 Inline dispatch_and_compile into its call site. (#158150)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/158150
Approved by: https://github.com/jamesjwu, https://github.com/wconstab
ghstack dependencies: #158149
2025-07-15 19:08:55 +00:00
94995eba07 [Log] add a hook for recompile user context (#157961)
Users may want compile-related but customized logging info to dynamo_compile. One example is to logging the current training iteration index when recompilation happens. In general, current training iteration index is not available to compiler, since the same compiled function may be called multiple times in the same training iteration. The user could provide the training iteration index in a user hook where torch.compile logs it when recompilation happens.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157961
Approved by: https://github.com/masnesral
2025-07-11 03:41:33 +00:00
701e22112d [PT2][Optimus][Observability] Refactor the logging to avoid excessive tlparse log (#153584)
Summary: context: https://fb.workplace.com/groups/943185660584207/permalink/1215335930035844/

Test Plan:
before: aps-aps-ig_v4_2t_2_make_baseline_30batch-735703723-f735706162

tlparse: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/aps-aps-ig_v4_2t_2_make_baseline_30batch-735703723-f735706162/attempt_0/version_0/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000&fbclid=IwZXh0bgNhZW0CMTEAAR575JfJZUtE7kQCqzIZVCYomv1q03JzuMFVok8qDA_FuGC8oZ6rhhb2EziSQA_aem_abITQJZQP45t51_r-J-cFw

Differential Revision: D74776025

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153584
Approved by: https://github.com/jamesjwu
2025-05-19 22:57:29 +00:00
ecd74c953f [dynamo] Recursively realize the stack_values (#152853)
Might also fix - https://github.com/pytorch/pytorch/issues/135696

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152853
Approved by: https://github.com/Lucaskabela, https://github.com/mlazos, https://github.com/jansel
2025-05-07 02:36:44 +00:00
a28dcdba2c Revert "[aot][ca] save bw_module in AOTAutogradCache (#151860)"
This reverts commit 613bd462721f3246888030de0a3f6932d52f515a.

Reverted https://github.com/pytorch/pytorch/pull/151860 on behalf of https://github.com/huydhn due to Chatting with @xmfan and decide to revert and reland this instead ([comment](https://github.com/pytorch/pytorch/pull/151860#issuecomment-2856709646))
2025-05-07 00:56:54 +00:00
93d8f6ee32 [reland] Detailed triton kernel logging (#152694)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/152694
Approved by: https://github.com/Skylion007
2025-05-05 02:46:57 +00:00
613bd46272 [aot][ca] save bw_module in AOTAutogradCache (#151860)
Compiled Autograd retraces AOT's bw_module at backward runtime into a larger graph, and today this runs into an issue on warm cache runs because the bw_module is not restored. This PR adds it to the cache, by first stripping it bare from unserializable metadata. I also intentionally differentiate the cached and non-cached versions to avoid accidental attempts of AOT compilation with a restored bw_module (would probably crash).

Note that since the cache entry may be used by runs that use compiled autograd and runs that do not, we need to cache both the lowered backward and the bw_module.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151860
Approved by: https://github.com/jamesjwu
ghstack dependencies: #149707
2025-05-01 21:59:43 +00:00
835413baed Revert "[Optimus][Observability] Improve tlparse logging (#151635)"
This reverts commit 06a3c3c8cdb2424d42d7926a49a18ee6852a40cb.

Reverted https://github.com/pytorch/pytorch/pull/151635 on behalf of https://github.com/clee2000 due to broke dynamo/test_structured_trace.py::StructuredTraceTest::test_ddp_graphs [GH job link](https://github.com/pytorch/pytorch/actions/runs/14600342064/job/40970324075) [HUD commit link](06a3c3c8cd), test did fail on PR but dr ci says it matches an existing failure, which it does, but also this PR breaks the test too ([comment](https://github.com/pytorch/pytorch/pull/151635#issuecomment-2822538113))
2025-04-22 21:39:23 +00:00
06a3c3c8cd [Optimus][Observability] Improve tlparse logging (#151635)
Summary: We improve tlparse logging for Optimus graph transformaton to enable easier debug

Test Plan:
```
TORCH_TRACE=~/my_trace_log_dir CUDA_VISIBLE_DEVICES=5 buck2 run mode/opt //aps_models/ads/ecosystem/tooling/tools/efficient_module_suite/pyper_models:pyper_model_perf_benchmark -- --flow_id 720055919 --shrink_model --mfu_profile_module "impl.shared_arch.dense_sparse_interaction" --use_synthetic_data
```

Differential Revision: D73229681

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151635
Approved by: https://github.com/Yuzhen11
2025-04-22 16:56:08 +00:00
bd77c3e054 [easy] Update test/dynamo/test_structured_trace.py (#151606)
Summary: test/dynamo/test_structured_trace.py is out of date because of some new fields. (I guess the test is disabled?). Bring it up to date.

Test Plan: `python test/dynamo/test_structured_trace.py`

Fixes #149671

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151606
Approved by: https://github.com/Skylion007
ghstack dependencies: #151599
2025-04-18 21:33:13 +00:00
ef64beb232 Include post grad gm and fx runnable in cache artifacts for tlparse (#151469)
Fixed #151462

Pull Request resolved: https://github.com/pytorch/pytorch/pull/151469
Approved by: https://github.com/bdhirsh
2025-04-17 17:14:13 +00:00
f649ee73ce Use source hashing to generate consistent symbolic ids (#149665)
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows

Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic

Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....

Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.

We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
2025-03-28 05:36:32 +00:00
af7719a2fa Revert "Use source hashing to generate consistent symbolic ids (#149665)"
This reverts commit 1f92348dc6c60e3020a723b37ecb8226cf2480c0.

Reverted https://github.com/pytorch/pytorch/pull/149665 on behalf of https://github.com/malfet due to Broke trunk, see 6eb3c2e282/1 ([comment](https://github.com/pytorch/pytorch/pull/149665#issuecomment-2758578187))
2025-03-27 16:02:27 +00:00
1f92348dc6 Use source hashing to generate consistent symbolic ids (#149665)
This PR was inspired by internal models that were cache missing due to PGO. At a high level the problem looks as follows

Run 1, Invocation 1: We do static compile, save some example values in PGO/automatic dynamic

Run 1, Invocation 2: We detect varying inputs, do dynamic compile, get a dynamic graph and save to PGO. Crucially what we save to PGO is actually a superset of what is actually dynamic. If we notice an input was varying, we mark it as dynamic in PGO even if later on that value gets specialized. When a value gets specialized, we actually remove the symbol from the graph. This results in an interesting conundrum where although we are producing the same isomorphic graph, PGO makes the second run cache miss. Let's see how....

Run 2, Invocation 1: We fetch the PGO, over-mark things as dynamic, get a fx graph, look it up in the cache and... whoops! cache miss! This is because of the aforementioned behavior where the PGO profile will cause us to over-allocate symbols. In practice this means we end up saving a graph in cache with symbols x:s1, y:s3 and on second attempt we cache miss with x:s1, y:s6 where symbols s3,s4,s5 were all optimistically marked dynamic by PGO and subsequently specialized.

We solve this problem by hashing the source names. This ensures somewhat stable assignment. To prevent catastrophic symbol collisions, we use linear probing to ensure no collisions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149665
Approved by: https://github.com/Mingming-Ding, https://github.com/laithsakka
2025-03-27 03:39:27 +00:00
6285a71aba [dynamo] fix bug where non-recursive disable modifies the original function (#148896)
Fixes https://github.com/pytorch/pytorch/issues/148787.

We fix this by:
- Wrapping the original function instead of directly modifying it
- When we detect that the previous frame is the non-recursive disable wrapper, then skip tracing this frame (non-recursive disable wrapper will always be skipped, so that frame will be present in the traceback)l

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148896
Approved by: https://github.com/jansel
2025-03-20 18:33:54 +00:00
7c87ec1b50 [ca] always do initial trace with dynamic shapes (#148801)
HUD: https://fburl.com/wzvx6tax no regressions (ignore the pass rate improvements, those come from #149030)
<img width="864" alt="image" src="https://github.com/user-attachments/assets/d7598f98-b378-4abb-a0c7-e4311162f681" />

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148801
Approved by: https://github.com/jansel
ghstack dependencies: #148799, #149030
2025-03-13 17:30:29 +00:00
7cdbb913e7 [logging] Set compile_id in the CachingAutotuner during compilation so we have it for dynamo_timed logging (#148693)
Summary: This is a simpler alternative to https://github.com/pytorch/pytorch/pull/146455, where we can stick the compileId (and forward/backward bool) in the CachingAutotuner so that we have it for logging `benchmark_all_configs`. Recall that the first attempt put the compileId in the inductor_meta and that interfered with caching.

Test Plan:
`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only nanogpt`
* tlparse: https://fburl.com/e71yn6uc
* dynamo_compile: https://fburl.com/scuba/dynamo_compile/sandbox/4ageghhv
* pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/4fgv1itq

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148693
Approved by: https://github.com/eellison
2025-03-13 03:50:58 +00:00
b54cf1a281 Revert "[logging] Set compile_id in the CachingAutotuner during compilation so we have it for dynamo_timed logging (#148693)"
This reverts commit 73c8068cf889829fb811fc75baac03163c9a42ee.

Reverted https://github.com/pytorch/pytorch/pull/148693 on behalf of https://github.com/ZainRizvi due to This is breaking lint on trunk. Please rebase these changes before merging them back in. [GH job link](https://github.com/pytorch/pytorch/actions/runs/13796723235/job/38590020554) [HUD commit link](73c8068cf8) ([comment](https://github.com/pytorch/pytorch/pull/148693#issuecomment-2715671875))
2025-03-11 20:50:23 +00:00
73c8068cf8 [logging] Set compile_id in the CachingAutotuner during compilation so we have it for dynamo_timed logging (#148693)
Summary: This is a simpler alternative to https://github.com/pytorch/pytorch/pull/146455, where we can stick the compileId (and forward/backward bool) in the CachingAutotuner so that we have it for logging `benchmark_all_configs`. Recall that the first attempt put the compileId in the inductor_meta and that interfered with caching.

Test Plan:
`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only nanogpt`
* tlparse: https://fburl.com/e71yn6uc
* dynamo_compile: https://fburl.com/scuba/dynamo_compile/sandbox/4ageghhv
* pt2_compile_events: https://fburl.com/scuba/pt2_compile_events/4fgv1itq

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148693
Approved by: https://github.com/eellison
2025-03-11 19:38:40 +00:00
492f3fd5cf replace usages of upload_graph in inductor with tlparse (v2) (#148720)
Reland of https://github.com/pytorch/pytorch/pull/148703

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148720
Approved by: https://github.com/mengluy0125
2025-03-10 22:47:58 +00:00
187d5c0eb1 [logging] Log cudagraphify timings to dynamo_timed (#143220)
Summary: this adds some new dynamo_timed calls in cudagraph_trees, primarily with the aim to add cudagraph-related timing to scuba. Things to note:
* Uses the changes in https://github.com/pytorch/pytorch/pull/141919 to log "runtime" entries
* The logging for chromium/tlparse/scuba relies on us providing a compile_id since it's not available in the environment. A lot of the changes here are just passing around the compile_id
* I believe the spirit of the scuba logging is to capture the overheads of `torch.compile`. Therefore, I'm not adding _every_ dynamo_timed to scuba. For example, "run_eager" is the first real execution of the inductor graph -- it's not cudagraph overhead, per se. Watch out for the two instances of `dynamo_compile_runtime_column_us="runtime_cudagraphify_time_us"`. Those are the spots I believe are _extra_ overhead we'd contribute to torch.compile.

Test Plan:
`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only dcgan`:
* tlparse: https://fburl.com/21yrdn8h
* scuba: https://fburl.com/scuba/dynamo_compile/sandbox/wt90wnjz

`python benchmarks/dynamo/torchbench.py --performance --training --amp --backend inductor --device cuda --print-compilation-time --repeat 5 --cold-start-latency --only nanogpt`
* tlparse: https://fburl.com/r9mp7uiv
* scuba: https://fburl.com/scuba/dynamo_compile/sandbox/1nvx94re

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143220
Approved by: https://github.com/eellison
2025-03-07 23:07:13 +00:00
7ae0e0b2ea [aotd] Log torch._functorch.config in tlparse (#147883)
Adding torch._functorch.config to tlparse for better debugability.
E.g. https://github.com/pytorch/pytorch/pull/147638 happened only with `torch._functorch.config.view_replay_for_aliased_outputs=False` which is True by defautl

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147883
Approved by: https://github.com/bdhirsh, https://github.com/jamesjwu
2025-02-27 11:22:45 +00:00
a4e4368157 add node mapping processing (#146103)
Summary:
Add `node_mapping = create_node_mapping(pre_grad_graph_id, inductor_post_to_pre_grad_nodes, debug_info)`, to produce a `inductor_provenance_tracking_node_mappings.json` file. This file will be used by the provenance tracking highlighter tool to create provenance visualization.

`inductor_triton_kernel_to_post_grad_nodes.json` and `inductor_provenance_tracking_node_mappings.json` files are not dumped if they are both empty. So it's removed from some of the `test_structured_trace` tests.

Test Plan:
CI
```
buck run mode/dev-nosan  fbcode//caffe2/test:fx -- -r graph_provenance

buck run mode/dev-nosan fbcode//caffe2/test/inductor:provenance_tracing

python test/dynamo/test_structured_trace.py
```

Differential Revision: D68190173

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146103
Approved by: https://github.com/chenyang78
2025-02-01 08:29:29 +00:00
6bd19e65b1 add inductor_triton_kernel_mapping_post_grad.json to tlparseadd changes (#145954)
Landing D67612181 here. The original exported PR somehow fails OSS CI, but this one doesn't (though the PR content is the same).

Add debug trace artifact to inductor_triton_kernel_mapping_post_grad.json (debug artifact for provenance tracking) to tlparse.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145954
Approved by: https://github.com/YUNQIUGUO
2025-01-30 06:18:48 +00:00
64ee57847b [dynamo][builtin-skipfiles-cleanup] Remove some builtins (#145856)
[dynamo][builtin-skipfiles-cleanup] Remove more builtins

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145856
Approved by: https://github.com/zou3519
2025-01-29 05:29:47 +00:00