Summary: As above, also changes a bunch of the build files to be better
Test Plan:
internal and external CI
did run buck2 build fbcode//caffe2:torch and it succeeded
Rollback Plan:
Reviewed By: swolchok
Differential Revision: D78016591
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158035
Approved by: https://github.com/swolchok
Changes needed for ROCm7.0:
* `warpSize` is _not_ a compile-time constant on device-side compilation for ROCm anymore
* `warpSize` is _not_ defined on host-side compilation, hence `at::cuda::warp_size()` must be used to query warpsize at runtime
* Redefining `C10_WARP_SIZE` to be a compile-time constant, with a reasonable value for device-side compilation, but an unreasonable value of 1 for host-side compilation
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156979
Approved by: https://github.com/jeffdaily
Co-authored-by: Jeff Daily <jeff.daily@amd.com>
Summary: Undo highlevel BUCKification in favor of something more organized by moving it to the dir itself
Test Plan:
CI
Rollback Plan:
Reviewed By: swolchok
Differential Revision: D76920013
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156503
Approved by: https://github.com/swolchok
Summary: The goal of this PR and future follow-up PRs is to group a set of header files required by AOTInductor Standalone in a separate directory, ensuring they are implemented in a header-only manner.
Test Plan: CI
Bifferential Revision: D75756619
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154850
Approved by: https://github.com/janeyx99
For correct import and export of functions when the dynamic linkage is used for HIP libraries on windows, the appropriate export/import macros need to be put in place. This Pull Request utilizes existing CUDA import/export macros by converting them to corresponding HIP macros during the hipification process.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144098
Approved by: https://github.com/jeffdaily
Adds `C10_UBSAN_ENABLED` macro and use it to disable `SymIntTest::Overflows` (fails under `signed-integer-overflow` UBSAN check).
Also cleans up UBSAN guard in `jit/test_misc.cpp` to use `C10_UBSAN_ENABLED` and the existing `C10_ASAN_ENABLED` instead of locally defining `HAS_ASANUBSAN`.
> NOTE: This should fix `SymIntTest::Overflows` failing under ubsan in fbcode too...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127967
Approved by: https://github.com/atalman, https://github.com/d4l3k, https://github.com/malfet
# Motivation
As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), The first runtime component we would like to upstream is `Device` which contains the device management functions of Intel GPU's runtime. To facilitate the code review, we split the code changes into 4 PRs. This is one of the 4 PRs and covers the changes under `c10`.
# Design
Intel GPU device is a wrapper of sycl device on which kernels can be executed. In our design, we will maintain a sycl device pool containing all the GPU devices of the current machine, and manage the status of the device pool by PyTorch. The thread local safe is considered in this design. The corresponding C++ files related to `Device` will be placed in c10/xpu folder. And we provide the c10 device runtime APIs, like
- `c10::xpu::device_count`
- `c10::xpu::set_device`
- ...
# Additional Context
In our plan, 4 PRs should be submitted to PyTorch for `Device`:
1. for c10
2. for aten
3. for python frontend
4. for lazy initialization shared with CUDA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116019
Approved by: https://github.com/gujinghui, https://github.com/jgong5, https://github.com/EikanWang, https://github.com/malfet
# Motivation
As mentioned in [[RFC] Intel GPU Runtime Upstreaming](https://github.com/pytorch/pytorch/issues/114842), The first runtime component we would like to upstream is `Device` which contains the device management functions of Intel GPU's runtime. To facilitate the code review, we split the code changes into 4 PRs. This is one of the 4 PRs and covers the changes under `c10`.
# Design
Intel GPU device is a wrapper of sycl device on which kernels can be executed. In our design, we will maintain a sycl device pool containing all the GPU devices of the current machine, and manage the status of the device pool by PyTorch. The thread local safe is considered in this design. The corresponding C++ files related to `Device` will be placed in c10/xpu folder. And we provide the c10 device runtime APIs, like
- `c10::xpu::device_count`
- `c10::xpu::set_device`
- ...
# Additional Context
In our plan, 4 PRs should be submitted to PyTorch for `Device`:
1. for c10
2. for aten
3. for python frontend
4. for lazy initialization shared with CUDA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116019
Approved by: https://github.com/gujinghui, https://github.com/jgong5, https://github.com/EikanWang, https://github.com/malfet
Related to #103973#110532#108404#94891
**Context:**
As commented in 6ae0554d11/cmake/Dependencies.cmake (L1198)
Kernel asserts are enabled by default for CUDA and disabled for ROCm.
However it is somewhat broken, and Kernel assert was still enabled for ROCm.
Disabling kernel assert is also needed for users who do not have PCIe atomics support. These community users have verified that disabling the kernel assert in PyTorch/ROCm platform fixed their pytorch workflow, like torch.sum script, stable-diffusion. (see the related issues)
**Changes:**
This pull request serves the following purposes:
* Refactor and clean up the logic, make it simpler for ROCm to enable and disable Kernel Asserts
* Fix the bug that Kernel Asserts for ROCm was not disabled by default.
Specifically,
- Renamed `TORCH_DISABLE_GPU_ASSERTS` to `C10_USE_ROCM_KERNEL_ASSERT` for the following reasons:
(1) This variable only applies to ROCm.
(2) The new name is more align with #define CUDA_KERNEL_ASSERT function.
(3) With USE_ in front of the name, we can easily control it with environment variable to turn on and off this feature during build (e.g. `USE_ROCM_KERNEL_ASSERT=1 python setup.py develop` will enable kernel assert for ROCm build).
- Get rid of the `ROCM_FORCE_ENABLE_GPU_ASSERTS' to simplify the logic and make it easier to understand and maintain
- Added `#cmakedefine` to carry over the CMake variable to C++
**Tests:**
(1) build with default mode and verify that USE_ROCM_KERNEL_ASSERT is OFF(0), and kernel assert is disabled:
```
python setup.py develop
```
Verify CMakeCache.txt has correct value.
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=0
```
Tested the following code in ROCm build and CUDA build, and expected the return code differently.
```
subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
```
This piece of code is adapted from below unit test to get around the limitation that this unit test now was skipped for ROCm. (We will check to enable this unit test in the future)
```
python test/test_cuda_expandable_segments.py -k test_fixed_cuda_assert_async
```
Ran the following script, expecting r ==0 since the CUDA_KERNEL_ASSERT is defined as nothing:
```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>> r
0
```
(2) Enable the kernel assert by building with USE_ROCM_KERNEL_ASSERT=1, or USE_ROCM_KERNEL_ASSERT=ON
```
USE_ROCM_KERNEL_ASSERT=1 python setup.py develop
```
Verify `USE_ROCM_KERNEL_ASSERT` is `1`
```
/xxxx/pytorch/build$ grep USE_ROCM_KERNEL_ASSERT CMakeCache.txt
USE_ROCM_KERNEL_ASSERT:BOOL=1
```
Run the assert test, and expected return code not equal to 0.
```
>> import sys
>>> import subprocess
>>> r=subprocess.call([sys.executable, '-c', "import torch;torch._assert_async(torch.tensor(0,device='cuda'));torch.cuda.synchronize()"])
>>>/xxxx/pytorch/aten/src/ATen/native/hip/TensorCompare.hip:108: _assert_async_cuda_kernel: Device-side assertion `input[0] != 0' failed.
:0:rocdevice.cpp :2690: 2435301199202 us: [pid:206019 tid:0x7f6cf0a77700] Callback: Queue 0x7f64e8400000 aborting with error : HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware exception. code: 0x1016
>>> r
-6
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114660
Approved by: https://github.com/jeffdaily, https://github.com/malfet, https://github.com/jithunnair-amd
Compiler behavior when non-zero offset is added to a null pointer is undefined and is a bad habit.
- When `lapackEig` is called with to estimate a workspace size, do not add matrix size to the W pointer.
- When `unpack_pivots_cpu_kernel` with zero `dim_size` exit early.
- When `topk_impl_loop` is called with `k` is zero, exit right away as output tensors are empty anyway.
- Ignore adding non-zero storage-offset in `TensorImpl::data_ptr_impl_impl`, which can be the case if tensor is created as `torch.empty(3)[4:]`.
- In `s_addmm_out_sparse_dense_worker` do not call `axpy` over an empty vector.
- In `_sparse_binary_op_intersection_kernel_impl` do skip computing `ptr_indices_dim` when `sparse_dim` is empty.
- Exit `grid_sample` forward/backward kernels earlier if either `input` or `grid` are empty tensors.
Found by asan in clang-12
Before the change UBSan report looks as follows:
```
ASAN_SYMBOLIZER_PATH=/usr/lib/llvm-12/bin/llvm-symbolizer UBSAN_OPTIONS=print_stacktrace=1 LD_PRELOAD=/usr/lib/llvm-12/lib/clang/12.0.1/lib/linux/libclang_rt.asan-x86_64.so python test_fx_experimental.py -v -k test_normalize_operator_exhaustive_linalg_eig_cpu_float32
Test results will be stored in test-reports/python-unittest/test_fx_experimental
Running tests...
----------------------------------------------------------------------
test_normalize_operator_exhaustive_linalg_eig_cpu_float32 (__main__.TestNormalizeOperatorsCPU) ... /opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/overrides.py:111: UserWarning: 'has_cuda' is deprecated, please use 'torch.backends.cuda.is_built()'
torch.has_cuda,
/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/overrides.py:112: UserWarning: 'has_cudnn' is deprecated, please use 'torch.backends.cudnn.is_available()'
torch.has_cudnn,
/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/overrides.py:118: UserWarning: 'has_mps' is deprecated, please use 'torch.backends.mps.is_built()'
torch.has_mps,
/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/overrides.py:119: UserWarning: 'has_mkldnn' is deprecated, please use 'torch.backends.mkldnn.is_available()'
torch.has_mkldnn,
/var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:937:17: runtime error: applying non-zero offset 20 to null pointer
#0 0x7f2025794888 in void at::native::lapackEig<float, float>(char, char, int, float*, int, float*, float*, int, float*, int, float*, int, float*, int*) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x9945888)
#1 0x7f20257da256 in void at::native::(anonymous namespace)::apply_linalg_eig<float>(at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor&, bool) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x998b256)
#2 0x7f20257d902d in at::native::(anonymous namespace)::linalg_eig_kernel(at::Tensor&, at::Tensor&, at::Tensor&, at::Tensor const&, bool) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x998a02d)
#3 0x7f20257b5b3d in at::native::linalg_eig_out_info(at::Tensor const&, at::Tensor&, at::Tensor&, at::Tensor&, bool) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x9966b3d)
#4 0x7f20257b4770 in at::native::linalg_eig_out(at::Tensor const&, at::Tensor&, at::Tensor&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x9965770)
#5 0x7f20280710e6 in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<std::tuple<at::Tensor&, at::Tensor&> (at::Tensor const&, at::Tensor&, at::Tensor&), &(at::(anonymous namespace)::(anonymous namespace)::wrapper_CPU_out_linalg_eig_out(at::Tensor const&, at::Tensor&, at::Tensor&))>, std::tuple<at::Tensor&, at::Tensor&>, c10::guts::typelist::typelist<at::Tensor const&, at::Tensor&, at::Tensor&> >, std::tuple<at::Tensor&, at::Tensor&> (at::Tensor const&, at::Tensor&, at::Tensor&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&, at::Tensor&, at::Tensor&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0xc2220e6)
#6 0x7f202727a045 in at::_ops::linalg_eig_out::call(at::Tensor const&, at::Tensor&, at::Tensor&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0xb42b045)
#7 0x7f20257b7e29 in at::native::linalg_eig(at::Tensor const&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x9968e29)
#8 0x7f2028070bf0 in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<std::tuple<at::Tensor, at::Tensor> (at::Tensor const&), &(at::(anonymous namespace)::(anonymous namespace)::wrapper_CPU__linalg_eig(at::Tensor const&))>, std::tuple<at::Tensor, at::Tensor>, c10::guts::typelist::typelist<at::Tensor const&> >, std::tuple<at::Tensor, at::Tensor> (at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0xc221bf0)
#9 0x7f2026b1f787 in std::tuple<at::Tensor, at::Tensor> c10::Dispatcher::redispatch<std::tuple<at::Tensor, at::Tensor>, at::Tensor const&>(c10::TypedOperatorHandle<std::tuple<at::Tensor, at::Tensor> (at::Tensor const&)> const&, c10::DispatchKeySet, at::Tensor const&) const (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0xacd0787)
#10 0x7f20273230a7 in at::_ops::linalg_eig::redispatch(c10::DispatchKeySet, at::Tensor const&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0xb4d40a7)
#11 0x7f202c3cc32d in torch::autograd::VariableType::(anonymous namespace)::linalg_eig(c10::DispatchKeySet, at::Tensor const&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x1057d32d)
#12 0x7f202c3cba96 in c10::impl::wrap_kernel_functor_unboxed_<c10::impl::detail::WrapFunctionIntoFunctor_<c10::CompileTimeFunctionPointer<std::tuple<at::Tensor, at::Tensor> (c10::DispatchKeySet, at::Tensor const&), &(torch::autograd::VariableType::(anonymous namespace)::linalg_eig(c10::DispatchKeySet, at::Tensor const&))>, std::tuple<at::Tensor, at::Tensor>, c10::guts::typelist::typelist<c10::DispatchKeySet, at::Tensor const&> >, std::tuple<at::Tensor, at::Tensor> (c10::DispatchKeySet, at::Tensor const&)>::call(c10::OperatorKernel*, c10::DispatchKeySet, at::Tensor const&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0x1057ca96)
#13 0x7f20272798e0 in at::_ops::linalg_eig::call(at::Tensor const&) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_cpu.so+0xb42a8e0)
#14 0x7f2043d97ae3 in torch::autograd::THPVariable_linalg_eig(_object*, _object*, _object*) (/opt/conda/envs/py_3.9/lib/python3.9/site-packages/torch/lib/libtorch_python.so+0x23feae3)
#15 0x5072d6 in cfunction_call /usr/local/src/conda/python-3.9.17/Objects/methodobject.c:543:19
...
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior /var/lib/jenkins/workspace/aten/src/ATen/native/BatchLinearAlgebra.cpp:937:17 in
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106354
Approved by: https://github.com/huydhn, https://github.com/lezcano
Summary:
Fix this warning:
```
caffe2\c10\macros\Macros.h(138): warning C4067: unexpected tokens following preprocessor directive - expected a newline
```
`caffe2/c10/util/variant.h` already has a similar to check and define a stub for `__has_attribute(x)`, so this would not be new to caffe2/pytorch.
Test Plan: CI should complete, still with plenty of caffe2 warnings but this one should be gone from the Windows build log
Differential Revision: D47735319
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105922
Approved by: https://github.com/kit1980
Basically the same as #88644, to fix warnings like `ptxas warning : Value of threads per SM for entry _ZN2at6native13reduce_kernelILi512ELi1ENS0_8ReduceOpIfNS0_10NormTwoffEEjfLi4EEEEEvT1_ is out of range. .minnctapersm will be ignored`
CC @ptrblck @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91972
Approved by: https://github.com/ngimel