Commit Graph

371 Commits

Author SHA1 Message Date
59f605be57 Revert "Reland 2: Add PyObject preservation for UntypedStorage (#109039)"
This reverts commit 419e4e17a2c991d17685754a7fb0ddcf7dfdac87.

Reverted https://github.com/pytorch/pytorch/pull/109039 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing linter job in trunk, probably due to a landrace ([comment](https://github.com/pytorch/pytorch/pull/109039#issuecomment-1715147020))
2023-09-12 07:26:11 +00:00
419e4e17a2 Reland 2: Add PyObject preservation for UntypedStorage (#109039)
Relands #103907 after it was reverted. This PR makes the new `ignore_hermetic_tls` argument of `check_pyobj` optional to avoid causing a compilation error in torchdistx

Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109039
Approved by: https://github.com/ezyang
2023-09-12 01:19:40 +00:00
68238606f3 Revert "Reland: Add PyObject preservation for UntypedStorage (#103907)"
This reverts commit 56b848157c259b4e53225e2516d603e9c8cfab79.

Reverted https://github.com/pytorch/pytorch/pull/103907 on behalf of https://github.com/huydhn due to Sorry for reverting your change, but it is failing torchdistx build which uses check_pyobj here 9c1b9f5cb2/src/python/torchdistx/_C/deferred_init.cc (L87) ([comment](https://github.com/pytorch/pytorch/pull/103907#issuecomment-1712121158))
2023-09-08 19:27:07 +00:00
8d863560bd Allow adding extra dispatch keys to wrapper tensor subclass (#108808)
Updated version of https://github.com/pytorch/pytorch/pull/108313 which has more review comments
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108808
Approved by: https://github.com/bdhirsh
2023-09-08 18:46:09 +00:00
56b848157c Reland: Add PyObject preservation for UntypedStorage (#103907)
This relands #97470 after #102553 reverted it. This PR attempts to fix the internal failure by avoiding an unnecessary intermediate storage buffer allocation in `c10::newStorageImplFromRefcountedDataPtr`.

Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/103907
Approved by: https://github.com/ezyang
2023-09-07 04:24:11 +00:00
8289ad8e5e Support is_mtia attribute. (#108307) (#108310)
Summary:

FBGEMM uses `self.iter.is_cuda` to check if the tensor is for CUDA. This diff enables similar feature `self.iter.is_mtia` for tensors with MTIA device key.

Test Plan: See diff D48693225

Reviewed By: jackm321

Differential Revision: D48809191

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108310
Approved by: https://github.com/albanD
2023-09-01 01:25:40 +00:00
80c7fdf49f wrapper subclasses: support non-cpu device for dynamic shape overload (#107926)
This is tested by AOTAutograd later in the stack, but I can add direct tests if anyone wants them.

Previously, the second overload of `_make_wrapper_subclass` (which supports dynamic shapes) would just always return a wrapper tensor that reported as being on `cpu`. This updates it to properly respect the `device` arg that was passed in.

At first I thought about doing this the same way that FakeTensor does it (override device to do a custom impl), but that seemed overly complicated. Since the subclass is a wrapper, we can just bake in the value on the wrapper.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107926
Approved by: https://github.com/ezyang
ghstack dependencies: #107915, #107916
2023-08-29 14:27:21 +00:00
c6e3adaf54 add dynamic shapes support for subclasses that override size/stride (#107916)
This is mostly a minor fix on top of @soulitzer's PR https://github.com/pytorch/pytorch/pull/107839.

(1) `strides` wasn't going through the new `set_tensor_attr_with_capsule` flow
(2) The dynamic shapes overload for `_make_wrapper_subclass` currently errors when you try to use custom sizes - I removed the error
(3) added a test

I need this later because I'm adding a `__torch_dispatch__` `FunctionalTensor` wrapper subclass, that needs to support dynamic shapes, and also plumb metadata calls to its inner tensor later.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107916
Approved by: https://github.com/ezyang, https://github.com/soulitzer
ghstack dependencies: #107915
2023-08-29 14:27:21 +00:00
5efd63b1b8 better support for fakeifying and dynamoing through torch_dispatch subclasses (with dynamic shapes) (#107415)
There is already some support for plumbing `__torch_dispatch__` tensor subclasses through dynamo, but this PR beefs it up a bit and adds a test. In particular:

(1) Fakeifying tensor subclasses didn't properly set autograd metadata (requires_grad, is_leaf) on the newly fakeified wrapper subclass. I don't actually have a test for this in this PR, but it's tested pretty heavily later in my aot autograd tests

(2) Fakeifying tensor subclasses didn't properly track source information for dynamic shapes on the inner tensors. I added a new `WrapperSubclassFieldSource` subclass, that represents a source coming from a tensor field on a wrapper subclass, which I use in the fakeifying logic, and again in symbolic_shapes.py to generate proper guards.

(3) `_make_wrapper_subclass()` marginally updated this code to work better with dynamic shapes. One thing that's a bit weird about `_make_wrapper_subclass`: it has two overloads, and the first explicitly does not support dynamic shapes (and the second.. does not support kwargs). I think that later we probably want to consolidate / at least make the first overload work with dynamic shapes, but I didn't want to handle that in this PR (so these smaller changes seemed like a strict improvement).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107415
Approved by: https://github.com/ezyang
2023-08-29 02:36:48 +00:00
256fed02e9 Check tensors are defined before attempting to access their impl (#106787)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106787
Approved by: https://github.com/albanD
2023-08-24 11:38:35 +00:00
4fd42e62c6 Remove unnecessary import in python_variable.cpp (#107794)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107794
Approved by: https://github.com/albanD, https://github.com/ZainRizvi
2023-08-24 00:24:25 +00:00
6e71ad0509 Add tensor post accumulate grad hook API (#107063)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107063
Approved by: https://github.com/albanD, https://github.com/soulitzer
2023-08-24 00:19:35 +00:00
432fce4e0d Revert "Add tensor post accumulate grad hook API (#107063)"
This reverts commit 3f655277d44909e0770e77e1b4fe1c9b0f39d7b9.

Reverted https://github.com/pytorch/pytorch/pull/107063 on behalf of https://github.com/ZainRizvi due to Diff train weirdness. Need to temporarily revert this PR and will right land it soon afterwards ([comment](https://github.com/pytorch/pytorch/pull/107063#issuecomment-1690799057))
2023-08-24 00:12:34 +00:00
bc0790559b Revert "Remove unnecessary import in python_variable.cpp (#107794)"
This reverts commit 9d23b8b3eabe2cd38eb5a11cc49cda6970675595.

Reverted https://github.com/pytorch/pytorch/pull/107794 on behalf of https://github.com/ZainRizvi due to Diff train weirdness. Need to temporarily revert this PR and will right land it soon afterwards ([comment](https://github.com/pytorch/pytorch/pull/107794#issuecomment-1690798855))
2023-08-24 00:10:18 +00:00
9d23b8b3ea Remove unnecessary import in python_variable.cpp (#107794)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107794
Approved by: https://github.com/albanD, https://github.com/ZainRizvi
2023-08-23 19:43:39 +00:00
02d41b7afd allow result of at::for_blob to advertise as resizeable (for tensor subclasses) (#107416)
Previously, the first overload of `_make_wrapper_subclass` returned a tensor that **always** advertised as having a non-resizeable storage. Eventually, we'll need it be advertise as resizeable for functionalization to work (since functionalization occasionally needs to resize storages).

Not directly tested in this PR (tested more heavily later in aot dispatch, but if someone wants me to write a more direct test I can add one).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107416
Approved by: https://github.com/ezyang, https://github.com/albanD
ghstack dependencies: #107417
2023-08-22 15:25:31 +00:00
3f655277d4 Add tensor post accumulate grad hook API (#107063)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107063
Approved by: https://github.com/albanD, https://github.com/soulitzer
2023-08-22 15:15:57 +00:00
1a6619a830 Added missing whitespace when reporting invalid gradient type (#104992)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104992
Approved by: https://github.com/albanD, https://github.com/soulitzer, https://github.com/Skylion007
2023-07-11 22:24:02 +00:00
4e204ff87b Added is_xla (#103100)
This change creates `is_xla` which is congruent with `is_cuda` and `is_cpu`. Useful in situations like: https://github.com/pytorch/pytorch/pull/102858

```
>>> x = torch.tensor([1], device=xm.xla_device())
>>> x.is_xla
True
>>> x.is_cpu
False
>>> x = torch.tensor([1])
>>> x.is_cpu
True
>>> x.is_xla
False
```

Attn: @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103100
Approved by: https://github.com/albanD
2023-06-22 23:31:04 +00:00
685505353a Back out "Add PyObject preservation for UntypedStorage (#97470)" (#102553)
Summary:
Original commit changeset: c24708d18ccb

Original Phabricator Diff: D46159983

Test Plan: SL tests and CI

Differential Revision: D46284986

Pull Request resolved: https://github.com/pytorch/pytorch/pull/102553
Approved by: https://github.com/DanilBaibak
2023-06-01 17:23:43 +00:00
5fe629e314 Add PyObject preservation for UntypedStorage (#97470)
Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97470
Approved by: https://github.com/ezyang
2023-05-23 01:27:30 +00:00
47ec9cc26d Improve error messages in THPVariable_set_grad (#100683)
Fixes #100174

I'm not sure if there's another direction that we had in mind for this issue, but if so I'm happy to make the changes 🙂

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100683
Approved by: https://github.com/soulitzer
2023-05-12 01:54:20 +00:00
555ab310dc Add itemsize and nbytes properties to Tensor (#98322)
Adds properties for itemsize and nbytes to Tensor matching the properties in NumPy.

Fixes https://github.com/pytorch/pytorch/issues/12728

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98322
Approved by: https://github.com/ezyang
2023-04-05 12:11:55 +00:00
a4b02a15d3 Support registering op returning symint in python (#95240)
Running an operator registered in python returning a symint will result in the following error:
```
RuntimeError: Unable to cast Python instance of type <class 'torch.SymInt'> to C++ type 'long'
```

The interaction of 2 things make the issue being triggered:
- We use boxed kernel here. For boxed kernel, we need convert py::object to IValue in torch/csrc/autograd/python_variable.cpp pushPyOutToStack .
- In the schema parsing code in torch/csrc/jit/frontend/schema_type_parser.cpp SchemaTypeParser::parseFakeAndRealType , if a SymInt is found, we register a Int type instead (not sure why we do this), and register SymInt as the real type.

The result is we would convert an SymInt to int in pushPyOutToStack and cause the issue.

The fix is to use real type when we convert py::object to IValue.

BTW, registering the same op using C++ API does not trigger the issue.
```
TORCH_LIBRARY(clib, m) {
  m.def("sqsum(SymInt a, SymInt b) -> SymInt", [](SymInt a, SymInt b) -> SymInt {
    return a * a + b * b;
  });
}
```
The reason is, the kernel registered in C++ is unboxed kernel and it does not trigger the code path above that converts an py::object to IValue.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95240
Approved by: https://github.com/larryliu0820, https://github.com/ezyang
2023-02-22 04:56:37 +00:00
0247ed27cc Apply Clang-Tidy readability-container-size-empty (#93236)
Not only is this change usually shorter and more readable, it also can yield better performance. size() is not always a constant time operation (such as on LinkedLists), but empty() always is.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93236
Approved by: https://github.com/malfet
2023-01-29 23:28:19 +00:00
f3266015a4 Add _StorageMeta metaclass for StorageBase (#92648)
Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92648
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-01-24 23:08:23 +00:00
4d9920fa9c Move PyInterpreter code in python_variable.cpp to its own files (#92647)
Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92647
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-01-24 23:08:23 +00:00
397b1a3da0 Remove unnecessary includes from python_variable.cpp (#92839)
Follow-up from #92647

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92839
Approved by: https://github.com/Skylion007
2023-01-24 02:59:08 +00:00
8c8cd9539d Add missing moves to torch autograd (#92772)
Applies some additional std::move functions to torch/csrc/autograd to opportunities that were found via static analysis.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92772
Approved by: https://github.com/ezyang
2023-01-24 02:01:52 +00:00
1237cf6b6c Allow direct Tensor constructor to return preexisting PyObject (#92754)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92754
Approved by: https://github.com/albanD, https://github.com/voznesenskym
2023-01-23 20:20:43 +00:00
97342ae04b Fix python tensor hooks behavior on inplace (#92734)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92734
Approved by: https://github.com/albanD
2023-01-21 21:32:37 +00:00
1bc60c6b31 [reland] Improve hooks ordering behavior (#92559)
This reverts commit e525f433e15de1f16966901604a8c4c662828a8a.

Original PR:  #85849
Fixes #ISSUE_NUMBER

In addition to reverting the revert, this PR:
- defines the virtual destructor of FunctionPreHook in the header. Why? Presumably the internal build imports the header from somewhere, but does not have function_hooks.cpp (where the virtual destructor was previously defined) in the same compilation unit.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92559
Approved by: https://github.com/albanD
2023-01-19 08:17:32 +00:00
e525f433e1 Revert "Improve hooks ordering behavior (#85849)"
This reverts commit 049838f2496bd1d29e4e8292714acb0042cc706e.

Reverted https://github.com/pytorch/pytorch/pull/85849 on behalf of https://github.com/albanD due to fails internal build
2023-01-18 15:27:22 +00:00
049838f249 Improve hooks ordering behavior (#85849)
Addresses: https://github.com/pytorch/pytorch/issues/35802

Design doc: https://docs.google.com/document/d/19xSib7FFknRQ5f3ptGFUmiOt3BrgXSUlTQH2xMcZJYg/edit#

### Changes in this PR

#### Implementation
- We have now have 3 fields: pre_hooks, retains_grad_hooks, and tensor_pre_hooks so that we can more precisely define their ordering and when they are executed.
- Since retains grad uses an entirely new field, we cannot reuse the old retains grad, logic. We refactor retains grad to call directly into the variable.cpp logic. Other logic in variable.cpp that handle cpp hooks must also be updated.

#### Hooks ordering and execution:
- Defines pre-hooks registered on tensor to run before pre-hooks registered on grad_fn
- Updates pre-hooks registered on tensor to always run, even if they are the inputs= to .grad()
- Post hooks (and pre hooks) can now observe the modifications to gradient by the tensor pre hook

#### Retains grad hooks
- retains grad hooks always execute last, even if there are other tensor pre-hooks registered

#### Unchanged:
- pre_hooks registered to grad_fn aren't expected to execute if they are the inputs= to .grad()

Follow ups:
- simplify retains_grad field to not be a vector, since it always holds a single hook
- potentially merge capture hooks with tensor pre hooks, this would involve some additional refactoring since
- python hooks registered to tensor behavior on in-place is still wrong

Pull Request resolved: https://github.com/pytorch/pytorch/pull/85849
Approved by: https://github.com/albanD
2023-01-17 16:23:21 +00:00
cyy
9b716a0682 Clean up more clang-tidy supression (#92203)
1. remove unused NOLINTNEXTLINE(performance-move-const-arg)
2. add more std::move

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92203
Approved by: https://github.com/Skylion007
2023-01-17 05:43:08 +00:00
3a0053abd6 Move PyObject code out of TensorImpl into new PyObjectSlot class (#92169)
Redo of PR #92099

Part of #91395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92169
Approved by: https://github.com/albanD
2023-01-14 02:55:32 +00:00
7078ad5b8c Reland "AOT Autograd refactor + cleanup, handle intermediate views of bases, use view replay, fix non-tensor input handling" (#92076)
Original PR: https://github.com/pytorch/pytorch/pull/89532

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92076
Approved by: https://github.com/janeyx99, https://github.com/albanD
2023-01-12 21:32:05 +00:00
db466ae057 Revert "[Modes] Add assert that the mode isn't already on the stack (#90770)"
This reverts commit 702838637d63936460ea2bf00b64ffec86ed6687.

Reverted https://github.com/pytorch/pytorch/pull/90770 on behalf of https://github.com/DanilBaibak due to Break internal build
2023-01-12 16:44:29 +00:00
702838637d [Modes] Add assert that the mode isn't already on the stack (#90770)
Redo of #89726 on a clean PR, thanks @voznesenskym for the first draft!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90770
Approved by: https://github.com/ezyang
2023-01-11 15:19:43 +00:00
b3603f8129 Revert "Deduplicate c10 error and PyTorchError hierarchy (#87855)"
This reverts commit 34f2d3e6ae56744c20c2f859f97101dff291bbbc.

Reverted https://github.com/pytorch/pytorch/pull/87855 on behalf of https://github.com/osalpekar due to perf regression in quantization tests
2023-01-06 19:56:35 +00:00
34f2d3e6ae Deduplicate c10 error and PyTorchError hierarchy (#87855)
Fixes #53370

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87855
Approved by: https://github.com/albanD
2023-01-02 15:53:36 +00:00
9f91e94080 Workaround for NumPy builds that ship with a broken Dlpack deleter (#89759)
NumPy versions 1.22 and 1.23 (and their respective bugfix releases included) have a buggy implementation of the Dlpack deleter that doesn't account for no-GIL contexts. Since we now release the GIL when deallocating tensors in `THPVariable_clear`, this leads to a failure of internal consistency checks when freeing a Dlpack-backed tensor from NumPy.

This PR adds a check for the buggy NumPy versions and overrides the `DlManagedTensor` deleter to reacquire the GIL before deallocation.

### Rationale for this implementation
The version check was added to `tensor_numpy.h/cpp` as it seemed like a more logical location for it than creating a new translation unit. The overriding of the deleter was originally attempted by directly modifying `at::fromDlpack`, but the lack of a build dependency on the Python C API in A10 prevented that. So, I extended the A10 Dlpack API instead to additionally accept a custom deleter functor.

Fixes #88082

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89759
Approved by: https://github.com/albanD
2022-12-28 13:23:29 +00:00
283cf718ed Fix _fix_weakref memory leak (#90823)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90823
Approved by: https://github.com/eellison, https://github.com/albanD
2022-12-15 01:07:29 +00:00
c79489c8e6 Expose to python the backward AD view_func (#89586)
This will be useful for other systems (AOTAutograd) that want to replay autograd views.

FYI @bdhirsh
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89586
Approved by: https://github.com/soulitzer
2022-11-24 03:39:58 +00:00
e0c194f10b Fix typos in messages under torch (#88961)
This PR fixes typos of messages and parms in c++ source and head files under `torch` directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/88961
Approved by: https://github.com/albanD
2022-11-14 19:06:41 +00:00
2b166532f7 Remove incorrect assert about hermetic state. (#88885)
I'm not sure why I thought this assert was valid in the first
place, and there's no comment about it.

The assert is tantamount to saying, "no tensor objects should
become dead via SafePyObject when hermetic mode is on."  But
suppose we run a Python GC while we're inside hermetic mode.
This could result in us disposing non-hermetic tensors, which
would hit decref.  So the assert seems invalid.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88885
Approved by: https://github.com/anjali411, https://github.com/malfet
2022-11-12 02:19:45 +00:00
53eac1d482 Revert "Revert "Put Python Dispatcher cache in dict, clear it on new registrations. (#88329)"" (#88489)
The bug was that I was accidentally caching at the wrong key name, so
we were never actually hitting the cache.  I've renamed the resolved
key to final_key to avoid shadowing in this way.

This reverts commit 410ce96a23a3496a45478e0b25ffac53aa3c116f.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88489
Approved by: https://github.com/albanD
2022-11-04 19:23:04 +00:00
410ce96a23 Revert "Put Python Dispatcher cache in dict, clear it on new registrations. (#88329)"
This reverts commit 86c7cd287caeb23c227d97d283e58bc123294746.

Reverted https://github.com/pytorch/pytorch/pull/88329 on behalf of https://github.com/clee2000 due to test_decomp takes an extra 2 hours in some jobs, windows takes so long it times out
2022-11-03 21:57:19 +00:00
f884e817d4 Make Python op registration work with torchdeploy/multipy (#87162)
See strategy at PythonOpRegistrationTrampoline.cpp for the
big picture.

Along the way, I made OperatorHandle support == and hashing,
and slightly changed the low level python_dispatch impl API
to disallow empty strings for dispatch key, which had the knock
on effect of requiring us to explicitly make sure we pass in
CompositeImplicitAutograd if we would have passed in "" (I didn't apply
this to the rest of the file because I'm lazy.)

Test strategy is we delete the logic for preventing Python op
registrations in torch from being skipped in a torchdeploy context
and show CI still works.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87162
Approved by: https://github.com/anjali411, https://github.com/bdhirsh
2022-11-03 12:56:44 +00:00
86c7cd287c Put Python Dispatcher cache in dict, clear it on new registrations. (#88329)
The motivation is that I am going to add the ability to temporarily
install entries to the python dispatcher, and to do that, I need
an easier way to clear the cache.  Putting the cache in a dict
centralizes cache clearing in one place.  I then add some easy
cache clearing.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88329
Approved by: https://github.com/albanD
2022-11-03 12:53:51 +00:00