https://github.com/pytorch/pytorch/pull/129001#discussion_r1645126801 is the motivation for the whole stack of PRs. In `torch/__init__.py`, `torch._C.Type` shadows `from typing import Type`, and there is no type stub for `torch._C.Type` in `torch/_C/__init__.pyi`. So we need to use `from typing import Type as _Type`. After enabling [Generic TypeAlias (PEP 585)](https://peps.python.org/pep-0585) in the `.pyi` type stub files, we can use `type` instead of `typing.Type` or `from typing import Type as _Type`.
------
- [Generic TypeAlias (PEP 585)](https://peps.python.org/pep-0585): e.g. `typing.List[T] -> list[T]`, `typing.Dict[KT, VT] -> dict[KT, VT]`, `typing.Type[T] -> type[T]`.
- [Union Type (PEP 604)](https://peps.python.org/pep-0604): e.g. `Union[X, Y] -> X | Y`, `Optional[X] -> X | None`, `Optional[Union[X, Y]] -> X | Y | None`.
Note that in `.pyi` stub files, we do not need `from __future__ import annotations`. So this PR does not violate issue #117449:
- #117449
------
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150727
Approved by: https://github.com/aorenste
ghstack dependencies: #150726
Summary:
Continuing the work from https://github.com/pytorch/pytorch/pull/146427
Adds the `torch.float8_e8m0fnu` dtype to PyTorch, as detailed in
https://github.com/pytorch/pytorch/issues/146414 . Please see the issue for a detailed definition of the format. Example of basic functionality:
```python
import torch
# round trip
x0 = torch.randn(4, 4, dtype=torch.float32)
x1 = x0.to(torch.float8_e8m0fnu) # RNE rounding
x2 = x1.to(torch.float32) # 2 ** exponent
# creation with empty
x0 = torch.empty(4, 4, dtype=torch.float8_e8m0fnu)
# printing
print(x0)
```
Done in this PR:
* numerical correctness
* op coverage (except for `torch._scaled_mm`): create tensor, cast to/from float32
* printing a tensor works
For future PRs:
* performance optimizations for casting
* torch._scaled_mm
* PT2
* various cleanups (detailed in comments with issue numbers)
Test Plan:
```
pytest test/quantization/core/experimental/test_float8.py -s
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147466
Approved by: https://github.com/drisspg
Fixes https://github.com/pytorch/pytorch/issues/141332
`F.logsigmoid` will return two outputs: `output` and `buffer`.
For `F.logsigmoid` cpu path, it will use buffer to store some intermediate values and use them when computing gradients, so it returns a `buffer` tensor with nonzero size. For cuda and xpu paths, buffer is useless, so the `buffer ` tensor size of xpu `F.logsigmoid` will be zero, just like cuda. The root cause of the issue is that the codes in `decompositions.py` (ref:https://github.com/pytorch/pytorch/blob/main/torch/_decomp/decompositions.py#L2803) only handle the cuda cases, when the a fake tensor with device is xpu run to here, it will use the cpu path and return a `buffer` with nonzero size, which is conflict to the implementation of intel xpu concrete tensor. Therefore this pr add conditions to handle xpu cases. Make sure the two returned buffer sizes match each other.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141333
Approved by: https://github.com/guangyey, https://github.com/EikanWang, https://github.com/ezyang
The idea behind the tracking is the following, whenever we see a tensor if the tensors is a root tensors (does not have any view metas ) when we consider is as the base of the all the tensors that shares its storage.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135141
Approved by: https://github.com/zou3519
`return_and_correct_aliasing` is used by FunctionalTensor today to ensure that when we call view/inplace ops, the input and output `FunctionalTensors` share the same storage.
This was previously done with a dispatcher call to `aten.set_`. In this PR I swap it out with a util that just manually does the storage swap. Benefits:
(1) we know this is safe in the specific way it is used by FunctionalTensor: avoiding the extra assertions in `aten.set_` is necessary to avoid some unbacked symint errors
(2) this should improve compile times a bit
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132524
Approved by: https://github.com/ezyang
ghstack dependencies: #132243, #132337, #132322
Adds support for SymInts in the FakeTensor cache.
A couple notes:
1. When a SymInt is present in the input key for a FakeTensor operation we cache on the ShapeEnv instead of using the FakeTensorMode cache. This is necessary so we don't have to remember and check the guards. It reduces the cache hits but there's diminishing return on how much work we can do before the cache becomes more of a burden than a gain.
2. We need to be careful that when we cache an output SymInt that is a direct copy from the input that when we have a cache-hit we copy the SymNode from the input to the output. This is important because the fx-graph building code actually uses SymNode ids in the process of building the graph so constructing a same-content-but-different-id SymNode will fail.
3. In the cache key we store SymInts as a _PySymInputStub. These represent SymInt (and friends) but support `__hash__` and `__eq__` (which SymInt do not).
4. In the cache entry we store SymInts as a _SymIntOutputStub.
Perf example:
```
python benchmarks/dynamo/timm_models.py --ci --accuracy --timing
--explain --inductor --dynamic-shapes --dynamic-batch-only --device cuda
--training --amp --total-partitions 2 --partition-id 0 --output
/tmp/training_timm_models.csv --filter crossvit_9_240
```
fake tensor cache before:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 68137
INFO: cache_misses: 837
INFO: cache_bypasses:
INFO: symbolic shape: 48224
INFO: CompositeImplicitAutograd: 917
INFO: non-fake tensor: 70
INFO: non-FakeTensor output: 62
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
and after:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 88187
INFO: cache_misses: 14233
INFO: cache_bypasses:
INFO: CompositeImplicitAutograd: 1037
INFO: non-FakeTensor output: 602
INFO: non-fake tensor: 70
INFO: unsafe view: 36
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127596
Approved by: https://github.com/eellison
ghstack dependencies: #131014, #129780
Changes:
1. Make some arguments positional-only as we only support Python 3.8+
2. Clean up `torch.typename(obj)` implementation.
3. Update type annotations., especially `is_tensor()` and `is_masked_tensor()` using `TypeGuard`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129001
Approved by: https://github.com/malfet
Changes:
1. Make some arguments positional-only as we only support Python 3.8+
2. Clean up `torch.typename(obj)` implementation.
3. Update type annotations., especially `is_tensor()` and `is_masked_tensor()` using `TypeGuard`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129001
Approved by: https://github.com/malfet
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127124
Approved by: https://github.com/Skylion007
ghstack dependencies: #127122, #127123
Fix: #125387
This PR helps keep track of whether an instantiated `ViewMeta` has symbolic values as
input or not. This is used for checking whether we use the AOTAutograd `ViewMeta`-replay
execution path, e.g. it doesn't support tensors that have `ViewMeta` with symbolic inputs.
In summary, the changes are:
- Add the field `ViewMeta::has_symbolic_inputs` and make it a required constructor
parameter
- Add the field `FunctionalTensorWrapper::is_symbolic_` and the method
`FunctionalTensorWrapper::maybe_mark_symbolic`
- Marks a `FunctionalTensorWrapper` as symbolic iff any of its `ViewMeta` have
symbolic inputs
- Add the plumbing of `FunctionalTensorWrapper::is_symbolic` to the Python API
- Codegen the computation of `ViewMeta::has_symbolic_inputs` for each view operation
- Use the AOTAutograd `ViewMeta`-replay path if:
- `target_functional_tensor` is not `None`; and
- `target_functional_tensor` is not symbolic (instead of using a functorch config)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125876
Approved by: https://github.com/ezyang
More details further down, but first a more high-level description of "how do we functionalize storage resizing"
Today, dynamo converts `param.untyped_storage().resize_(x)` calls that it sees from fsdp into a custom op, `ops.inductor.resize_storage_bytes_(x)`
So given this setup, there are 3 main cases that I think we want to handle:
(1) graph input starts with a real storage size, gets resized down to zero in the graph
(2) graph input starts with 0 storage size, gets resized up in the graph
(3) graph input starts with 0 storage size, gets resized up and used in some compute, then resized back down to 0
For case (1) we need to emit a `resize_storage_bytes_` at the end of the graph, similar to how we emit `copy_()` for data mutations.
For case (2), we need to emit a `resize_storage_bytes_` in the graph, and we **also** need to emit a `copy_()` (the input had its storage resized up, and filled in with data, which is we need to reflect as an input mutation)
For case (3), the net effect is that the input had no data on entry and exit of the function, so we don't need to emit any mutable ops in the end of the graph.
The main thing to call out is that: we need to write a functionalization rule for `resize_storage_byte_`, (`FunctionalTensorWrapper::storage_resize_()`) and this rule actually does very little. We would like to **not** emit any new ops in the graph (like say, a functional resize op). Instead, we should expect / rely on the fact that any resize up will be immediately followed by a `copy_()`/`foreach_copy_`/`out=` op, that will fill in the data of the tensor. So `FunctionalTensor` can temporarily live in a state where its data is invalid, until the `x.copy_(y)` "updates" its data with the new tensor.
So effectively, all that this rule does is:
(1) it stores metadata on the storage, indicating that the tensor was resized, as well as the updated storage size. We need this info in AOTAutograd, so it knows whether to emit a mutable resize_() op in the graph epilogue
(2) There is also a corner case: if we are resizing down to zero, but our tensor had **previously** had a zero size storage, then we update `value_` to point to the original value of the tensor. The reason this seems safe is because if we have a zero storage sized tensor `x`, and we resize it up, use it in some compute, resize it back down to zero, and use it somewhere, we would want the functional version of this code to use the original `x` after the second resize. For FSDP, this is important because we end up saving parameters (graph inputs) for backward, and we want to make sure that the thing we save (and the output to the forward graph) is the original, zero-storage-sized parameter, and not the "version 2" of the parameter after the first resize_()
I think a good order to look at changes in this PR would be:
(1) `test_aotdispatch.py` shows the 3 main cases I focused on as well as the expected functionalized graphs
(2) In `FunctionalStorageImpl.h/cpp`, I had to add a notion of "original base", and "original/curr_size". The first is so I can re-use the zero-size tensor after multiple resizes, and the second is so I can tell in AOTAutograd whether any resizes canceled each other out into a no-op
(3) FunctionalTensorWrapper.h/cpp has the new resize functionalizion rule + some extra utils
(4) `_functorch/_autograd`: the main changes in this folder were around adding the logic at trace-time to detect when we need to put a resize_() in the graph. I also have some assertions to check that any inputs that experience storage resizing will **always be in the graph** and not the opaque epilogue, and I also limited the resize_() mutation case so that you can only ever start with zero storage, or end with zero storage (you can't do e.g. `torch.ones(2).storage().resize_(3)`), and banned it on tensor subclasses
(5) `fake_tensor.py`/`meta_utils.py`: we now need to be able to fakeify tensors with zero storage, so I added a quick version of it in meta_utils.py. This also.. has ramifications for fake tensor caching that I need to fix (include the storage size on the cache key, maybe?)
------------------
This PR subsumes https://github.com/pytorch/pytorch/pull/120971.
This PR is enough to **almost** get a simple ppFSDP forward pass tracing with a functionalized resize_() properly. It also attempts to do the updated version from @jansel, where we don't have any notion of `resize_()` in the graph at all, post functionalization. It would probably be good to test it with @yf225 's FSDP changes, and see how many of the FX passes it allows us to remove. I think that in theory, it should allow us to remove all FX passes that affect the forward graph / partitioner, **except** the one that forces views to be recomputed in the backward (more details below).
There are a few things worth calling out:
(1) failed attempt at functionalizing `aten.copy_()`. I originally wanted to get a version takes these operations:
```
param.storage().resize_(all_gather_size)
param.copy_(all_gather_buffer)
out = aten.matmul(param, param)
```
and functionalizes them into:
```
out = aten.matmul(all_gather_buffer, all_gather_buffer)
```
This would involve getting functionalization to turn `x.copy_(y)` into a giant no-op that just returns `y`. Unfortunately, we can't actually do this in a reasonable way within functionalization (instead, there's a functional `aten.copy` in the graph - see the test case graph expecttest for details). Why? In order for that transformation to be safe, `x` and `y` need to have the same metadata. However, it's possible for `x` and `y` to be subclasses of different types. This is not something we can easily tell from within functionalization, and would be a layering violation. So for now I'm leaving it to downstream code to optimize away the `aten.copy` (this is already the case today, so I think inductor can handle this)
(2) The forward doesn't **actually** run successfully in this PR (see the `assertRaisesRegex` in the test). Why?
The final forward graph looks like this:
```
def forward(self, primals_1, primals_2):
_foreach_copy = torch.ops.aten._foreach_copy.default([primals_1], [primals_2]); primals_2 = None
getitem = _foreach_copy[0]; _foreach_copy = None
mm = torch.ops.aten.mm.default(getitem, getitem); getitem = None
t_1 = torch.ops.aten.t.default(primals_1); primals_1 = None
return [mm, t_1]
```
Where `primals_1` starts out as a secretly-zero-storage-size parameter, and gets resized up and back down within the forward (these are functionalized away).
Importantly, the matmul happy on the result of the `foreach_copy`, **but** the activation that we save for backward (`t_1`) is the result of transposing the **original parameter** (the zero-storage-size param). This is exactly the optimization in fsdp that allows us to have good peak memory usage.
The problem is that the min-cut partitioner decides to save `t_1` for backward. Running this code in eager breaks, because the kernel for `aten.permute(x)` is not happy when `x` has secretly-zero-sized-storage.
The real problem here is that in eager mode the `permute` kernel runs during the backward, after backward hooks have properly resized the saved activation. Here, we are running the transpose in the forward.
One option would be to turn off the checks in our view kernels and allow them to work on zero-storage-sized tensors, which feels pretty bad. Another option is to tweak the partitioner (or use one of Will's FX passes) to force the partitioner to not save views for backward, and allow the views to be recomputed in the backward. This seems kind of silly, but is also probably harmless.
(3) The backward is still broken. To be fair, this issue is pretty separable from "functionalizing storage resize calls", and can be fixed later (either by a real fix to our tracing infra, or via another hacky FX pass). More description of this problem is described at issue (8) of my PR description in https://github.com/pytorch/pytorch/pull/120971
(4) I only added support for "full graph" resizing: basically, the limited case where a param starts with zero storage size, and gets resized up and back down. I think we can add support for the graph break case, but I think we can keep that add-on separate from this PR unless we need it immediately. I also added asserts so we should fail loudly when we hit this case
(5) I have a change to FakeTensor creation when inputs have zero storage size that.. is probably ok. But I also removed FakeTensor caching on view ops, which I probably need to fix before I can land this PR
(6) I added a notion of "original_base" to `FunctionalStorageImpl`. More details are in the comments, but my rational for this was that we basically need it to ensure that autograd saves the **original**, zero-storage-sized param for backward, after resizing up and back down
(7) I had to update our eager kernels for `aten.copy` and `aten._foreach_copy`, to handle the case where the `self` argument has secretly-zero-storage. Inductor can probably generate correct code for this case, but we need these ops to work properly in this situation for the `aot_eager` backend to do the right thing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122434
Approved by: https://github.com/jansel
Adds a ruff lint rule to ban raising raw exceptions. Most of these should at the very least be runtime exception, value errors, type errors or some other errors. There are hundreds of instance of these bad exception types already in the codebase, so I have noqa'd most of them. Hopefully this error code will get commiters to rethink what exception type they should raise when they submit a PR.
I also encourage people to gradually go and fix all the existing noqas that have been added so they can be removed overtime and our exception typing can be improved.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124570
Approved by: https://github.com/ezyang
Fix: #120336
This PR fixes an issue on AOTAutograd, specifically on backends that don't support views
by themselves (e.g. XLA). Previously, AOTAutograd tried to reconstruct output views by
calling `as_strided` on the concrete bases using sizes and strides of the outputs that
aliased them. Since backends such as XLA doesn't support tensor aliasing, the sizes and
strides would be that of a contiguous tensor (not a view tensor). Because of that, calling
`as_strided` would error, since the output tensor would be bigger than its base. Instead,
this PR applies the sequence of `ViewMeta` gathered for each output during the
functionalization phase.
**Note:** we intentionally don't support base tensors that went through metadata mutation,
i.e. in-place view operations.
In summary, this PR:
- Introduces one `FunctionalTensorWrapper` member function alongside its Python APIs
- `apply_view_metas(base)`: applies the `ViewMeta` sequence of the given instance onto
another base
- Introduces a `OutputAliasInfo.functional_tensor` field
- Saves the `FunctionalTensorWrapper` instance collected by the functionalization phase
- Wraps it with a new `FunctionalTensorMetadataEq` class for comparing only the
metadata of the tensors
- Plumbs `OutputAliasInfo.functional_tensor` to `gen_alias_from_base` function
- Applies the `ViewMeta` sequence of the saved `FunctionalTensor` onto `aliased_base_tensor`
- Propagates `OutputAliasInfo.functional_tensor` when updating `fw_metadata`
(this PR description was updated in order to reflect the most recent changes)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121007
Approved by: https://github.com/bdhirsh