Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66744
Modified loops in files under fbsource/fbcode/caffe2/ from the format
`for(TYPE var=x0;var<x_max;x++)`
to the format
`for(const auto var: irange(xmax))`
This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.
Test Plan: Sandcastle
Reviewed By: ngimel
Differential Revision: D31705358
fbshipit-source-id: d6ea350cbaa8f452fc78f238160e5374be637a48
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66234
Modified loops in files under fbsource/fbcode/caffe2/ from the format
`for(TYPE var=x0;var<x_max;x++)`
to the format
`for(const auto var: irange(xmax))`
This was achieved by running r-barnes's loop upgrader script (D28874212) with some modification to exclude all files under /torch/jit and a number of reversions or unused variable suppression warnings added by hand.
bypass_size_limit
allow-large-files
Test Plan: Sandcastle
Reviewed By: ngimel
Differential Revision: D30652629
fbshipit-source-id: 0ae6c4bbbb554bad42e372792a6430e1acf15e3e
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
This PR refactors RNN / GRU / LSTM layers in C++ API to exactly match the implementation in Python API.
**BC-breaking changes:**
- Instead of returning `RNNOutput`, RNN / GRU forward method now returns `std::tuple<Tensor, Tensor>`, and LSTM forward method now returns `std::tuple<Tensor, std::tuple<Tensor, Tensor>>`, matching Python API.
- RNN / LSTM / GRU forward method now accepts the same inputs (input tensor and optionally hidden state), matching Python API.
- RNN / LSTM / GRU layers now have `forward_with_packed_input` method which accepts `PackedSequence` as input and optionally hidden state, matching the `forward(PackedSequence, ...)` variant in Python API.
- RNN / LSTM / GRU layers no longer have these fields: `w_ih` / `w_hh` / `b_ih` / `b_hh`. Instead, to access the weights and biases of the gates, users should do e.g. `rnn->named_parameters()["weight_ih_l0"]`, which mirrors the Python API `rnn.weight_ih_l0`.
- In `RNNOptions`
- `tanh()` / `relu()` / `activation` are removed. Instead, `nonlinearity` is added which takes either `torch::kTanh` or `torch::kReLU`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `LSTMOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `GRUOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
The majority of the changes in this PR focused on refactoring the implementations in `torch/csrc/api/src/nn/modules/rnn.cpp` to match the Python API. RNN tests are then changed to reflected the revised API design.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34322
Differential Revision: D20458302
Pulled By: yf225
fbshipit-source-id: ffff2ae1ddb1c742c966956f6ad4d7fba03dc54d
Summary:
This PR refactors RNN / GRU / LSTM layers in C++ API to exactly match the implementation in Python API.
**BC-breaking changes:**
- Instead of returning `RNNOutput`, RNN / GRU forward method now returns `std::tuple<Tensor, Tensor>`, and LSTM forward method now returns `std::tuple<Tensor, std::tuple<Tensor, Tensor>>`, matching Python API.
- RNN / LSTM / GRU forward method now accepts the same inputs (input tensor and optionally hidden state), matching Python API.
- RNN / LSTM / GRU now has `forward_with_packed_input` method which accepts `PackedSequence` as input and optionally hidden state, matching the `forward(PackedSequence, ...)` variant in Python API.
- In `RNNOptions`
- `tanh()` / `relu()` / `activation` are removed. Instead, `nonlinearity` is added which takes either `torch::kTanh` or `torch::kReLU`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `LSTMOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
- In `GRUOptions`
- `layers` -> `num_layers`
- `with_bias` -> `bias`
The majority of the changes in this PR focused on refactoring the implementations in `torch/csrc/api/src/nn/modules/rnn.cpp` to match the Python API. RNN tests are then changed to reflected the revised API design.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34322
Differential Revision: D20311699
Pulled By: yf225
fbshipit-source-id: e2b60fc7bac64367a8434647d74c08568a7b28f7
Summary:
This PR adds `RNNCell` / `LSTMCell` / `GRUCell` layers to the C++ frontend, with implementations exactly matching the Python API equivalent.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34400
Differential Revision: D20316859
Pulled By: yf225
fbshipit-source-id: bb7cee092622334043c0d0fd0fcb4e75e707699c
Summary:
This PR is BC-breaking in the following way:
- The deprecated `torch::nn::BatchNorm` is removed in favor of `torch::nn::BatchNorm{1,2,3}d`
- The deprecated `torch::nn::FeatureDropout` is removed in favor of `torch::nn::Dropout{2,3}d`
- The deprecated `torch::nn::modules_ordered_dict` is removed. User should do `Sequential sequential({{"m1", MyModule(1)}, {"m2", MyModule(2)}})` instead.
- The deprecated `torch::nn::init::Nonlinearity` is removed, in favor of the following enums:
- `torch::kLinear`
- `torch::kConv1D`
- `torch::kConv2D`
- `torch::kConv3D`
- `torch::kConvTranspose1D`
- `torch::kConvTranspose2D`
- `torch::kConvTranspose3D`
- `torch::kSigmoid`
- `torch::kTanh`
- `torch::kReLU`
- `torch::kLeakyReLU`
- The deprecated `torch::nn::init::FanMode` is removed, in favor of the following enums:
- `torch::kFanIn`
- `torch::kFanOut`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34508
Differential Revision: D20351601
Pulled By: yf225
fbshipit-source-id: cca0cd112f29a31bb023e348ca8f82780e42bea3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33027
This PR allows default arguments in module's forward method to be skipped when module is used in `torch::nn::Sequential`, by introducing the `FORWARD_HAS_DEFAULT_ARGS` macro and requiring that all modules that have default arguments in its forward method must have a corresponding `FORWARD_HAS_DEFAULT_ARGS` macro call.
Fixes issue mentioned in https://github.com/pytorch/pytorch/issues/30931#issuecomment-564144468.
Test Plan: Imported from OSS
Differential Revision: D19777815
Pulled By: yf225
fbshipit-source-id: 73282fcf63377530063e0092a9d84b6c139d2e32
Summary:
This PR changes the implementation of C++ Conv{1,2,3}d layers to exactly match the Python version, and add F::conv{1,2,3}d functionals. For more thorough testing, I will rely on the parity test mechanism which uses values from `common_nn.py` to generate the inputs and options that we are interested in testing.
This PR is BC-breaking in the following way:
In `Conv{1,2,3}dOptions`:
- `with_bias` is renamed to `bias`.
- `input_channels` is renamed to `in_channels`.
- `output_channels` is renamed to `out_channels`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28917
Differential Revision: D18471526
Pulled By: yf225
fbshipit-source-id: 7a33f60654ad93cc2e043245e7ff9e0ef9da15b3
Summary:
Add torch::nn::BatchNorm1d function/module support for the C++ API.
torch::nn::BatchNorm{2,3}d will be added after this PR is merged.
Related Issue: https://github.com/pytorch/pytorch/issues/25883
Reviewer: yf225
I would like to discuss about below items.
* Necessity of `num_batches_tracked` in `BatchNormImplBase`
* `num_batches_tracked` is needed to calculate `momentum` when we do not feed `momentum` argument in Python API. But in C++ API, `momentum` argument has a default value.
* `num_batches_tracked` is only used for counting up `BatchNorm1d::foward()` call. I think it is no necessary for user anymore.
* The design of `BatchNorm{1,2,3}dOptions`
* We have already `BatchNormOptions` used for deprecated `BatchNorm` module. However, it is hard to use it for `BatchNorm{1,2,3}dOptions` because of the arguments disagreement of each modules.
* In this PR, I introduce `BatchNormOptionsv2` template class for the `BatchNorm{1,2,3}dOptions`. But I'm not sure this design is good or not.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28176
Differential Revision: D18196843
Pulled By: yf225
fbshipit-source-id: 667e2b5de4150d5776c41b9088c9e6c2ead24cd4
Summary:
I finally found a way to get the following API to work for constructing a list of named submodules for `Sequential`:
```cpp
Sequential sequential({
{"m1", MyModule(1)},
{"m2", MyModule(2)}
})`
```
which was actually our original proposed design and much simpler than our current API:
```cpp
Sequential sequential(modules_ordered_dict({
{"m1", MyModule(1)},
{"m2", MyModule(2)}
}));
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28774
Differential Revision: D18174013
Pulled By: yf225
fbshipit-source-id: 3a18c2d36b6a65a07bee7346a7516780567c7774
Summary:
Sequential does not like modules added to it to take Tensor&
(const Tensor& and Tensor are both OK).
Functional and others use Tensor when they want to potentially
change things in-place.
This changes ReLU and friends to also do that.
Unfortunately, this seems to be BC breaking on the ABI level.
On the other hand, use of the module ReLU seems rare enough outside
Sequential (in particular in C++ models, the standard seems to be
to use torch::relu instead).
is the BC breaking OK here? (yf225 or anyone else)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28501
Differential Revision: D18089978
Pulled By: yf225
fbshipit-source-id: ac9aba6dc2081117dece57cd8a15bafe14ec8f51
Summary:
added more variables to EmbeddingOptions and updated EmbeddingImpl reset, forward functions. Also added EmbeddingBag.
-----
This PR is BC-breaking in the following way:
Previously, `EmbeddingOptions` supports `count` and `dimension` as options arguments. After this PR, they are renamed to `num_embeddings` and `embedding_dim` respectively.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26358
Differential Revision: D17714337
Pulled By: yf225
fbshipit-source-id: f9f969c68e4bece106b92f8e2e02ac39c8455fb7
Summary:
This PR aims to re-organize C++ API `torch::nn` folder structure in the following way:
- Every module in `torch/csrc/api/include/torch/nn/modules/` (except `any.h`, `named_any.h`, `modulelist.h`, `sequential.h`, `embedding.h`) has a strictly equivalent Python file in `torch/nn/modules/`. For example:
`torch/csrc/api/include/torch/nn/modules/pooling.h` -> `torch/nn/modules/pooling.py`
`torch/csrc/api/include/torch/nn/modules/conv.h` -> `torch/nn/modules/conv.py`
`torch/csrc/api/include/torch/nn/modules/batchnorm.h` -> `torch/nn/modules/batchnorm.py`
`torch/csrc/api/include/torch/nn/modules/sparse.h` -> `torch/nn/modules/sparse.py`
- Containers such as `any.h`, `named_any.h`, `modulelist.h`, `sequential.h` are moved into `torch/csrc/api/include/torch/nn/modules/container/`, because their implementations are too long to be combined into one file (like `torch/nn/modules/container.py` in Python API)
- `embedding.h` is not renamed to `sparse.h` yet, because we have another work stream that works on API parity for Embedding and EmbeddingBag, and renaming the file would cause conflict. After the embedding API parity work is done, we will rename `embedding.h` to `sparse.h` to match the Python file name, and move the embedding options out to options/ folder.
- `torch/csrc/api/include/torch/nn/functional/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/functional/pooling.h` contains the functions for pooling, which are then used by the pooling modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`.
- `torch/csrc/api/include/torch/nn/options/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/options/pooling.h` contains MaxPoolOptions, which is used by both MaxPool modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`, and max_pool functions in `torch/csrc/api/include/torch/nn/functional/pooling.h`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26262
Differential Revision: D17422426
Pulled By: yf225
fbshipit-source-id: c413d2a374ba716dac81db31516619bbd879db7f
Summary:
Previously, we were not able to assign names to `nn::Sequential`'s submodules. This PR adds this feature to match the Python API. Example use:
```cpp
Sequential sequential(named_submodule({
{"linear", Linear(10, 3)},
{"conv2d", Conv2d(1, 2, 3)},
{"dropout", Dropout(0.5)},
{"batchnorm", BatchNorm(5)},
{"embedding", Embedding(4, 10)},
{"lstm", LSTM(4, 5)}
}));
```
It also enables loading parameters of Python `nn.Sequential` module with custom submodules names into C++ frontend, unblocking https://github.com/pytorch/vision/pull/728#issuecomment-466661344.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17552
Differential Revision: D14246834
Pulled By: yf225
fbshipit-source-id: 3030b5c5d68f6dd5d3e37ac4b4f98dc6d6d9ba72
Summary:
This is a pre-cursor diff to Python <-> C++ frontend integration -- I have a follow-up PR coming for that. This PR changes the C++ frontend module interface to replace the custom "cursor"s I introduced some time ago with `OrderedDict`. I introduced cursors at the time as a convenient way of applying functions and query operations on a modules' parameters, buffers and modules, allowing things like `module.parameters().map(my_func)`. However, I noticed that (1) this functionality is easily implement-able on top of a regular data structure and (2) more importantly, using OrderedDicts is much, much easier for Python integration. This is especially true given that ScriptModule today also uses OrderedDict. Since C++ frontend modules and ScriptModules will soon too share as many implementation details as possible, it is overall the best move to ditch the custom cursor datastructure and pervasively use OrderedDict everywhere.
For this I did:
1. Changed the C++ frontend module interface to more closely match the Python one by providing `parameters()`, `named_parameters()` and other methods Python provides. This is very important for the following diff which binds these into Python for inter-op with Python modules.
2. In lieu of the `Cursor::apply()` method I added `nn::Module::apply`. This again is one more unifying step between Python and C++, since Python modules have an apply function too.
3. Deleted all uses of Cursor.
4. Tidied and beefed up the `OrderedDict` class. In particular, I made `OrderedDict::Item` store an `std::pair` under the hood, because that is trivial to bind into Python and saved me a lot of headaches. `key` and `value` become methods instead of fields, which they should have been from the very start anyway because it allows exactly these kinds of changes, as per usual good software engineering principle of encapsulation.
5. Added many tests for the OrderedDict use in `nn::Module`.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13427
Differential Revision: D12894092
Pulled By: goldsborough
fbshipit-source-id: 715770c95a9643753a1db26d7f9da9a78619a15d
Summary:
In TorchScript and C++ extensions we currently advocate a mix of `torch::` and `at::` namespace usage. In the C++ frontend I had instead exported all symbols from `at::` and some from `c10::` into the `torch::` namespace. This is far, far easier for users to understand, and also avoid bugs around creating tensors vs. variables. The same should from now on be true for the TorchScript C++ API (for running and loading models) and all C++ extensions.
Note that since we're just talking about typedefs, this change does not break any existing code.
Once this lands I will update stuff in `pytorch/tutorials` too.
zdevito ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13523
Differential Revision: D12942787
Pulled By: goldsborough
fbshipit-source-id: 76058936bd8707b33d9e5bbc2d0705fc3d820763
Summary:
This PR is a large codemod to rewrite all C++ API tests with GoogleTest (gtest) instead of Catch.
You can largely trust me to have correctly code-modded the tests, so it's not required to review every of the 2000+ changed lines. However, additional things I changed were:
1. Moved the cmake parts for these tests into their own `CMakeLists.txt` under `test/cpp/api` and calling `add_subdirectory` from `torch/CMakeLists.txt`
2. Fixing DataParallel tests which weren't being compiled because `USE_CUDA` wasn't correctly being set at all.
3. Updated README
ezyang ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11953
Differential Revision: D9998883
Pulled By: goldsborough
fbshipit-source-id: affe3f320b0ca63e7e0019926a59076bb943db80
Summary:
1. Document the Sequential module in the C++ API at a high, why-does-this-exist, and low, how-to-use, level
2. Change the Sequential tests to be in a style that makes them easier to convert to gtest. No code changes.
ebetica ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11648
Differential Revision: D9834526
Pulled By: goldsborough
fbshipit-source-id: 39f2f5c6cbbf8ed5a1b69986978c8ef127036de1
Summary:
This PR removes the `using Tensor = autograd::Variable;` alias from `torch/tensor.h`, which means `torch::Tensor` is now `at::Tensor`. This PR fixes up some last uses of `.data()` and tidies up the resulting code. For example, I was able to remove `TensorListView` such that code like
```
auto loss = torch::stack(torch::TensorListView(policy_loss)).sum() +
torch::stack(torch::TensorListView(value_loss)).sum();
```
is now
```
auto loss = torch::stack(policy_loss).sum() + torch::stack(value_loss).sum();
```
CC jgehring
ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10516
Differential Revision: D9324691
Pulled By: goldsborough
fbshipit-source-id: a7c1cb779c9c829f89cea55f07ac539b00c78449
Summary:
This PR provides 4 fixes / features:
1. torch::nn::Cloneable inherits virtually from torch::nn::Module. We want to pass around a module with new functions, and the best way to do this is to do a diamond inheritance pattern, i.e.
```c++
struct MySuperModuleImpl : virtual public torch::nn::Module {
virtual void myFunction() = 0;
}
struct MySuperModule : public torch::nn::Cloneable<MySuperModule>, MySuperModuleImple {};
struct MyModule : public MySuperModule<MyModule> {
void myFunction() override;
};
```
This way, we can simply pass around MySuperModuleImpl around instead of torch::nn::Module.
2. Optimizer options are public now, since there's no way to decay the LR or modify it during training otherwise
3. Serialization functions creates autograd history and calls copy_! Bad!
4. Optimizers did not create buffers after add_parameters was called.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9837
Reviewed By: goldsborough
Differential Revision: D9199746
Pulled By: ebetica
fbshipit-source-id: 76d6b22e589a42637b7cc0b5bcd3c6b6662fb299
Summary:
ebetica made me aware that `nn::Module::clone()` always clones to the current device (usually CPU) instead of preserving the device of each parameter. This PR changes the signature of `clone` from
`shared_ptr<Module> clone()`
to
`shared_ptr<Module> clone(optional<Device> device = nullopt)`
with semantics of:
1. If a `device` is given, all parameters/buffers are moved to that device,
2. If no `device` is supplied (default), parameters/buffers retain their device.
ezyang apaszke ebetica
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9609
Differential Revision: D8957367
Pulled By: goldsborough
fbshipit-source-id: 0d409ae645ed2b8d97d6fc060240de2f3d4bc6c8
Summary:
I noticed that `Sequential::clone()` does not work. This is because `Sequential` does not use `reset()` which is normally where modules have to initialize and register its submodules. Further, this is because of the way `Sequential` allows its modules to be passed in the constructor, which doesn't work with `reset()` (since it does "late" initialization).
I've added some better error messages inside `Cloneable::clone()` which makes this kind of mistake clearer for other users, and tests for `Sequential::clone()`.
I also had to give `AnyModule` a deep `clone()` method.
ebetica ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9372
Differential Revision: D8865189
Pulled By: goldsborough
fbshipit-source-id: b81586e0d3157cd3c4265b19ac8dd87c5d8dcf94
Summary:
In the C++ API, `Sequential` currently was not refcounted itself, but stored `shared_ptr<AnyModule>` to get the reference semantics. This is unfortunate because most modules in the API are accessed via `->`, e.g. `Linear l(1, 2); l->forward(...);`. `Sequential` was different in that it had value semantics itself, thus was accessed via `.`.
This PR makes `Sequential` store `AnyModule` (without extra indirection), and uses the same pImpl mechanism we use for all other modules to make `Sequential` have reference semantics itself. This makes it consistent with the rest of the library. It also removes one level of indirection inside of `Sequential`, which is cool.
One thing I had to change was that the `ModuleHolder` with which the whole pImpl thing is implemented previously did some tricks to make `Linear(3, 4)` actually construct `Linear(LinearOptions(3, 4))`. This doesn't work well with `Sequential` since it takes a variadic parameter pack. Instead, I made `ModuleHolder` forward all arguments to the underlying module, and then further pushed the trick to forward parameters to modules' options types into the actual Modules. This adds one constructor per Module in the library. This is not something user modules have to do (unless they want this nice forwarding themselves). It makes the code simpler overall.
ezyang ebetica apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9151
Reviewed By: ezyang
Differential Revision: D8809298
Pulled By: goldsborough
fbshipit-source-id: da68452c3de912fbc67af330ba93b5220de6909f
Summary:
Added a way to `dynamic_cast` an `nn::Module` and get a pointer to it. `nn::Module::is<T>` just checked if the return value of the `dynamic_cast` was nullptr, so I got rid of `is<T>` since it's equivalent to `as<T> != nullptr`(or just `as<T>` due to boolean conversion).
We're now at
```
if (auto* conv = module.as<nn::Conv2d>()) {
conv->weight.data().normal_(0.0, 0.02);
} else if (auto* bn = module.as<nn::BatchNorm>()) {
bn->weight.data().normal_(1.0, 0.02);
bn->bias.data().fill_(0);
}
```
ezyang apaszke ebetica
Closes https://github.com/pytorch/pytorch/pull/9149
Differential Revision: D8735954
Pulled By: goldsborough
fbshipit-source-id: e2b8f6f0cea16a621f8bc0807a33cc7651d25154
Summary:
There is no way to concatenate two `Sequential`s in Python, but it's also easier to do in an immutable fashion by just writing `Sequential(first.modules() + second.modules())`. Concatenating vectors isn't as easy in C++, so I think it's fair to save users some for loops by giving them `Sequential::extend()`.
apaszke ebetica ezyang
CC jamespinkerton
Closes https://github.com/pytorch/pytorch/pull/9116
Reviewed By: ezyang
Differential Revision: D8719630
Pulled By: goldsborough
fbshipit-source-id: 840d7ac70755350e6202b493c531e30ecbb6546f
Summary:
Operations on `Variable`s (or `torch::Tensor`) usually return `at::Tensor`. This is usually fine, but the `AnyModule` used in the implementation of `torch::Sequential` is very picky about types, and does not understand implicit conversions like this. This means that `sequential.forward(at_tensor_that_is_actually_a_variable)` will fail unless you wrap `at_tensor_that_is_actually_a_variable` with `torch::Tensor`.
This PR adds a special case to `AnyModule` that will convert an `at::Tensor` to `torch::Tensor` when the tensor is really a variable, and else just pass the `at::Tensor`. This is a nice little usability improvement for the often-used `Sequential` class.
ebetica ezyang
Closes https://github.com/pytorch/pytorch/pull/8968
Reviewed By: ezyang
Differential Revision: D8670407
Pulled By: goldsborough
fbshipit-source-id: 3635ed6ed28238f3900ce4a876d07f1b11713831
Summary:
Sets the random seed at the start of C++ tests so that everything is super deterministic.
I made sure we only generate random values from torch instead of `std::`, so that this seed always applies. I.e. I do:
```
torch::randint(2, {2}, at::kInt64)
```
instead of
```
std::rand() % 2
```
Also got rid of the tests that test the random seeding, since it would interfere here. And the test is not useful since we just use ATen's seeding mechanism, which should work.
Fixes #7288#7286#7289
ebetica ezyang
Closes https://github.com/pytorch/pytorch/pull/8903
Differential Revision: D8667269
Pulled By: goldsborough
fbshipit-source-id: a833e86e156d5e68dae8c53a4b1c433cb0608b6c
Summary:
This PR is the final step to making `torch::` the only namespace users of the C++ API ever see. Basically, I did:
``` cpp
namespace torch {
using namespace at;
}
```
And then changed `torch::` to `at::` almost everywhere. This worked surprisingly well out of the box. So users can now write `torch::relu` and `torch::log_softmax` and `torch::conv2d` instead of having to know when to use `at::` and when `torch::`. This is happy!
Another thing I did was to have `using Dtype = at::ScalarType`, which will be the eventual name anyway.
ebetica ezyang apaszke zdevito
Closes https://github.com/pytorch/pytorch/pull/8911
Reviewed By: ezyang
Differential Revision: D8668230
Pulled By: goldsborough
fbshipit-source-id: a72ccb70fca763c396c4b0997d3c4767c8cf4fd3
* Better forward methods in C++ API
capitalize error message in test_torch.test_flatten
Support for operator()
* Add operator() to Functional
* Get rid of SigmoidLinear
* Add BoundFunction to FunctionalImpl
* Remove macro from conv because it makes errors more nasty
* Created TORCH_MODULE macro
Rewrote Linear
Rewrote Dropout and added default constructor to TORCH_MODULE macro
Turned TORCH_MODULE contens into a proper base class
Added some documentation
Got rid of the old Dropout module
Got rid of the old Embedding module
Got rid of the old BatchNorm module
Got rid of the old Conv module
Fixing optimizers
Rebase
Removed old RNN modules and the TORCH_ATTR macro
Removed temporary P:: namespace
Added cloning behavior to all modules
Got rid of some get() calls
self review nits
Remove noexcept from ModuleHolder methods that can throw
Remove spaces
Add missing override to reset() methods
Added examples to documentation in pimpl.h
* Post rebase fixes
* Created TensorOptions
Storing the type in TensorOptions to solve the Variable problem
Created convenience creation functions for TensorOptions and added tests
Converted zeros to TensorOptions
Converted rand to TensorOptions
Fix codegen for TensorOptions and multiple arguments
Put TensorOptions convenience functions into torch namespace too
All factory functions except *_like support TensorOptions
Integrated with recent JIT changes
Support *_like functions
Fix in place modification
Some cleanups and fixes
Support sparse_coo_tensor
Fix bug in Type.cpp
Fix .empty calls in C++ API
Fix bug in Type.cpp
Trying to fix device placement
Make AutoGPU CPU compatible
Remove some auto_gpu.h uses
Fixing some headers
Fix some remaining CUDA/AutoGPU issues
Fix some AutoGPU uses
Fixes to dispatch_tensor_conversion
Reset version of new variables to zero
Implemented parsing device strings
Random fixes to tests
Self review cleanups
flake8
Undo changes to variable.{h,cpp} because they fail on gcc7.2
Add [cuda] tag to tensor_options_cuda.cpp
Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks
Fix linker error in AutoGPU.cpp
Fix bad merge conflict in native_functions.yaml
Fixed caffe2/contrib/aten
Fix new window functions added to TensorFactories.cpp
* Removed torch::TensorOptions
Added code to generate wrapper functions for factory methods
Add implicit constructor from Backend to TensorOptions
Remove Var() from C++ API and use torch:: functions
Use torch:: functions more subtly in C++ API
Make AutoGPU::set_device more exception safe
Check status directly in DynamicCUDAHooksInterface
Rename AutoGPU to DeviceGuard
Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad
remove python_default_init: self.type()
Add back original factory functions, but with deprecation warnings
Disable DeviceGuard for a couple functions in ATen
Remove print statement
Fix DeviceGuard construction from undefined tensor
Fixing CUDA device compiler issues
Moved as many methods as possible into header files
Dont generate python functions for deprecated factories
Remove merge conflict artefact
Fix tensor_options_cuda.cpp
Fix set_requires_grad not being checked
Fix tensor_new.h
TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac
Fix bug in DeviceGuard.h
Missing includes
TEMPORARILY moving a few more methods into .cpp to see if it fixes windows
Fixing linker errors
* Fix up SummaryOps to use new factories
Undo device agnostic behavior of DeviceGuard
Use -1 instead of optional for default device index
Also move DeviceGuard methods into header
Fixes around device index after optional -> int32_t switch
Fix use of DeviceGuard in new_with_tensor_copy
Fix tensor_options.cpp
* Fix Type::copy(
* Remove test_non_float_params from ONNX tests
* Set requires_grad=False in ONNX tests that use ints
* Put layout/dtype/device on Tensor
* Post merge fixes
* Change behavior of DeviceGuard to match AutoGPU
* Fix C++ API integration tests
* Fix flip functions