Commit Graph

127 Commits

Author SHA1 Message Date
162ca185ff [BE][PYFMT] migrate PYFMT for torch/_[a-h]*/ to ruff format (#144551)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144551
Approved by: https://github.com/ezyang
ghstack dependencies: #148186
2025-06-25 06:16:06 +00:00
d1947a8707 Migrate from lru_cache to cache (#155613)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155613
Approved by: https://github.com/ezyang
ghstack dependencies: #155612
2025-06-11 19:44:18 +00:00
db491825e0 [invoke_subgraph] Add logging (#155284)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155284
Approved by: https://github.com/zou3519
ghstack dependencies: #155270
2025-06-07 11:31:53 +00:00
83d22256f8 [BE][Ez]: Improve typing in torch._logging (#155345)
Add a few missing returns in torch._logging and use ruff to infer the obvious ones.
LazyStr now properly checks the return type of the Callable and the args and kwargs passed to it

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155345
Approved by: https://github.com/ezyang
2025-06-07 00:04:39 +00:00
254293b777 Add flag _metrics_log_runtime to disable runtime metric logging by default (#153506)
https://github.com/pytorch/pytorch/pull/152708 expanded support of `get_estimated_runtime` to many more types of `SchedulerNodes`. This caused an increase in compile time because we're always calling `get_estimated_runtime` to populate the metrics table. This PR adds a flag for this logging, which reduces the instruction count by 8%. Long term, we should probably merge metrics.py with TORCH_LOGS/tlparse (suggestion from @xmfan).

Update: added support for TORCH_LOGS for the metrics logging.

Test Plan:
mm_loop.py and many existing tests cover.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153506
Approved by: https://github.com/eellison
2025-05-22 01:02:11 +00:00
aec7cc60d7 add graph_code_verbose_log artifact for fx passes (#153775)
Fixes #153646

This PR refactors the logging behavior in the FX pass insert_deferred_runtime_asserts and runtime_assert.py to separate verbose/intermediate graph logs from the final output graph log. All verbose logs generated during the FX pass are now routed to a new artifact logger, graph_code_verbose, while only the final output graph remains logged to the original graph_code artifact.

Changes

- Added a new artifact logger: [graph_code_log = torch._logging.getArtifactLogger(__name__, "graph_code_verbose")]
- Updated all verbose/intermediate FX pass logs in [insert_deferred_runtime_asserts] to use the new graph_code_verbose artifact.
- Ensured that only the final output graph is logged to the original graph_code artifact.
- No changes to the FX pass logic or output—only logging behavior is affected.

Notes
This change is backward-compatible and does not affect the functional behavior of FX passes.
No changes to user-facing APIs.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/153775
Approved by: https://github.com/williamwen42
2025-05-21 18:31:59 +00:00
181bfabb9e fix set_logs for a single child log file (#153580)
Tested via

```
+        import logging
+        torch._logging.set_logs(modules={"torch._functorch._aot_autograd.autograd_cache": logging.DEBUG})
```

```
python test/dynamo/test_aot_autograd_cache.py -k test_multi_graph_specialization
```
and verifying logs are printed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153580
Approved by: https://github.com/ColinPeppler
2025-05-15 05:58:45 +00:00
bf34e228c5 [export] Beef up guard_added logs (#149465)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149465
Approved by: https://github.com/pianpwk
2025-03-20 23:02:07 +00:00
edd640a95a [BE][Ez]: Use itertools.chain.from_iterable when possible (#148190)
Often makes the code more readable, more efficient, and adds support for infinite iterables.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/148190
Approved by: https://github.com/jansel, https://github.com/malfet
2025-03-06 20:37:06 +00:00
4e4191854b [logs][qol] Print log options alphabetically (#147888)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147888
Approved by: https://github.com/jansel
2025-02-26 18:15:39 +00:00
580f1183b4 Enable ruff rule S324 (#147665)
Fixes #147627

- Add `S324` in `pyproject.toml `
- Running check and clean warnings

```bash
lintrunner --take RUFF --all-files
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147665
Approved by: https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-02-25 18:27:34 +00:00
93316cfe94 Move ir_pre_fusion.txt and ir_post_fusion.txt to TORCH_LOGS (#147248)
Fixes #147002

Moves ir_{pre, post}_fusion.txt to be controlled by TORCH_LOGS instead of TORCH_COMPILE_DEBUG.
Updated tests of these logs as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/147248
Approved by: https://github.com/eellison
2025-02-20 00:26:17 +00:00
81eb2a78ad [Inductor] Add autotuning artifact logging (#147222)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147222
Approved by: https://github.com/henrylhtsang, https://github.com/eellison
2025-02-19 09:22:42 +00:00
d23e4f8109 use DTRACE_ENV_VAR as the trace logs directory of set (#146412)
```
(/home/bobren/local/a/pytorch-env) [7:47] devgpu035:/home/bobren/local/a/pytorch TORCH_DTRACE=/tmp/bb python r1.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146412
Approved by: https://github.com/angelayi
ghstack dependencies: #145848
2025-02-04 20:54:28 +00:00
8f861a8dfb [experimental] filter logs by subgraph (#146047)
```
TORCH_LOGS="dynamo" TORCH_LOGS_TRACE_ID_FILTER="[1/0]" python r4.py
```

```
TORCH_LOGS="dynamo" TORCH_LOGS_TRACE_ID_FILTER="[0/0],[1/0_1]" python r4.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146047
Approved by: https://github.com/laithsakka
2025-02-04 19:11:44 +00:00
0e49f35e3d Integrate sympy expression provenance logging with structured logs (#145848)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145848
Approved by: https://github.com/angelayi
2025-02-04 01:21:37 +00:00
f2cfe8b59f PEP585 update - mostly toplevels (#145178)
See #145101 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145178
Approved by: https://github.com/bobrenjc93
2025-01-22 02:21:14 +00:00
e58c823ab8 Implement increment and add_to_set for CompileEventLogger (#143427)
This diff implements `increment` and `add_to_set`, which are features of MetricsContext, but not ChromiumEventLogger. This allows us to add a bunch of other metricscontext callsites to use CompileEventLogger instead.

Differential Revision: [D67354867](https://our.internmc.facebook.com/intern/diff/D67354867/)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143427
Approved by: https://github.com/masnesral
2025-01-14 02:42:49 +00:00
dcc3cf7066 [BE] fix ruff rule E226: add missing whitespace around operator in f-strings (#144415)
The fixes are generated by:

```bash
ruff check --fix --preview --unsafe-fixes --select=E226 .
lintrunner -a --take "RUFF,PYFMT" --all-files
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144415
Approved by: https://github.com/huydhn, https://github.com/Skylion007
2025-01-08 21:55:00 +00:00
99f2491af9 Revert "Use absolute path path.resolve() -> path.absolute() (#129409)"
This reverts commit 45411d1fc9a2b6d2f891b6ab0ae16409719e09fc.

Reverted https://github.com/pytorch/pytorch/pull/129409 on behalf of https://github.com/jeanschmidt due to Breaking internal CI, @albanD please help get this PR merged ([comment](https://github.com/pytorch/pytorch/pull/129409#issuecomment-2571316444))
2025-01-04 14:17:20 +00:00
45411d1fc9 Use absolute path path.resolve() -> path.absolute() (#129409)
Changes:

1. Always explicit `.absolute()`: `Path(__file__)` -> `Path(__file__).absolute()`
2. Replace `path.resolve()` with `path.absolute()` if the code is resolving the PyTorch repo root directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129409
Approved by: https://github.com/albanD
2025-01-03 20:03:40 +00:00
cc4e70b7c3 Revert "Use absolute path path.resolve() -> path.absolute() (#129409)"
This reverts commit 135c7db99d646b8bd9603bf969d47d3dec5987b1.

Reverted https://github.com/pytorch/pytorch/pull/129409 on behalf of https://github.com/malfet due to need to revert to as dependency of https://github.com/pytorch/pytorch/pull/129374 ([comment](https://github.com/pytorch/pytorch/pull/129409#issuecomment-2562969825))
2024-12-26 17:26:06 +00:00
135c7db99d Use absolute path path.resolve() -> path.absolute() (#129409)
Changes:

1. Always explicit `.absolute()`: `Path(__file__)` -> `Path(__file__).absolute()`
2. Replace `path.resolve()` with `path.absolute()` if the code is resolving the PyTorch repo root directory.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129409
Approved by: https://github.com/albanD
2024-12-24 08:33:08 +00:00
4ee166b82f [ca] add compiled autograd to CompileId (#141907)
tlparse PR: https://github.com/ezyang/tlparse/pull/83

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141907
Approved by: https://github.com/ezyang
2024-12-21 00:41:24 +00:00
8fae4397b4 Add "inductor_pre_grad_graph" logging (#142717) (#143126)
Summary:

Add new structured logging "inductor_pre_grad_graph"

This is for inductor provenance tracking front-end to load this graph from tlparse.
ghstack-source-id: 257581974
exported-using-ghexport

Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' //caffe2/test/dynamo:test_dynamo -- -r StructuredTraceTest
```

Differential Revision: D67150288

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143126
Approved by: https://github.com/desertfire
2024-12-13 21:48:25 +00:00
60c54467db [logging] Log runtime autotuning timing to scuba (#141919)
See test plan in internal diff [D66679369](https://our.internmc.facebook.com/intern/diff/D66679369)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141919
Approved by: https://github.com/jamesjwu, https://github.com/ezyang
2024-12-13 21:22:13 +00:00
dc23f1944a Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-12 17:39:14 +00:00
5c97ac9721 Revert "Remove unused Python variables in torch/[_-a]* (#133492)"
This reverts commit fda975a7b3071a20dab8fc2c4e453479e1bb7cf2.

Reverted https://github.com/pytorch/pytorch/pull/133492 on behalf of https://github.com/clee2000 due to Sorry, I need to revert this in order to revert something else.  The only thing you need to do is rebase and remerge ([comment](https://github.com/pytorch/pytorch/pull/133492#issuecomment-2536635516))
2024-12-11 17:29:12 +00:00
49e4307686 [Dynamo] add debug logging for graph region expansion (#141382)
This PR adds debug logging for the region expansion algorithm.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/141382
Approved by: https://github.com/williamwen42
ghstack dependencies: #141381
2024-12-11 02:22:21 +00:00
fda975a7b3 Remove unused Python variables in torch/[_-a]* (#133492)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133492
Approved by: https://github.com/albanD
2024-12-10 21:48:44 +00:00
b11ff3cf60 [logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)
Here's the overview:

There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.

Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.

And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
2024-11-14 19:11:20 +00:00
d63eb3c46c Revert "[logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)"
This reverts commit cb15c1515778499ae801dcf67d55c8bdab4724ef.

Reverted https://github.com/pytorch/pytorch/pull/139849 on behalf of https://github.com/kit1980 due to Breaking an internal tests + there is a bug according to the author ([comment](https://github.com/pytorch/pytorch/pull/139849#issuecomment-2474459094))
2024-11-13 18:47:51 +00:00
cb15c15157 [logging] Overhaul dynamo_timed and CompilationMetrics logging. (#139849)
Here's the overview:

There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.

Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.

And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
ghstack dependencies: #140094
2024-11-11 14:24:23 +00:00
585dbfa583 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-03 06:29:57 +00:00
92d7f29e59 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit f6be44c74e012fb4329e6e716ebb78e9f5092a3b.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to more fbcode errors ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452985581))
2024-11-02 13:11:04 +00:00
f6be44c74e Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-02 11:50:11 +00:00
8d1eaa3da6 Revert "Profile guided optimization for automatic_dynamic (#139001)"
This reverts commit a6630bcf8736e4d66375688dfd8b45c401de3fef.

Reverted https://github.com/pytorch/pytorch/pull/139001 on behalf of https://github.com/ezyang due to internal code triggers import cycle ([comment](https://github.com/pytorch/pytorch/pull/139001#issuecomment-2452833882))
2024-11-02 03:38:15 +00:00
a6630bcf87 Profile guided optimization for automatic_dynamic (#139001)
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.

This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
2024-11-01 21:43:25 +00:00
d9e87fb339 [draft-export] Include guards for constraint violation errors (#138748)
Summary:
Added where logs are being added to constrain violations in draft export.

Example output:
```
1. Constraint violation error.
    The specified input dynamic_shapes spec was found to be incorrect during tracing.
    Specifically, this guard was added: Eq(s0, 3), where {'s0': "L['args'][0][0].size()[0]"}.
    This occured at the following stacktrace:
        File /data/users/angelayi/fbsource/buck-out/v2/gen/fbcode/1beb9df83fd74b9a/scripts/angelayi/draft_export/__test_draft_export__/test_draft_export#link-tree/torch/nn/modules/module.py, lineno 1736, in _wrapped_call_impl
        File /data/users/angelayi/fbsource/buck-out/v2/gen/fbcode/1beb9df83fd74b9a/scripts/angelayi/draft_export/__test_draft_export__/test_draft_export#link-tree/torch/nn/modules/module.py, lineno 1747, in _call_impl
        File /data/users/angelayi/fbsource/buck-out/v2/gen/fbcode/1beb9df83fd74b9a/scripts/angelayi/draft_export/__test_draft_export__/test_draft_export#link-tree/scripts/angelayi/draft_export/test_draft_export.py, lineno 138, in forward.
    Because of this, we have modified the dynamic shapes structure to be the following:
    ```
    dynamic_shapes = {'a': {0: 3}}
    ```
```

The result of this diff is also that `dynamic` logs are permanently turned on during draft export. Otherwise we cannot capture the `[guard added]` logs from symbolic_shapes.py.

Test Plan: `buck2 run @//mode/dev-nosan scripts/angelayi/draft_export:test_draft_export -- -r "test_shape_failure" `

Differential Revision: D64862374

Pull Request resolved: https://github.com/pytorch/pytorch/pull/138748
Approved by: https://github.com/ezyang
2024-10-30 00:24:17 +00:00
2f007e5de5 Make trace log dir persist through multiple set_logs() calls (#137793)
Summary: Currently, calling `torch._logging.set_logs()` resets the log directory leading to multiple tlparse outputs. This prevents the dir from resetting after the first call.

Reviewed By: ezyang

Differential Revision: D64118047

Pull Request resolved: https://github.com/pytorch/pytorch/pull/137793
Approved by: https://github.com/ezyang
2024-10-23 14:23:03 +00:00
76b044d7cb Don't actually import module when checking if its valid (#136548)
Summary: If you actually import the module, you might end up with some import cycle situation where a module is imported too early and accesses things that are not initialized yet.

Test Plan:
sandcastle and ossci

```
TORCH_LOGS=+torch._inductor.codecache buck run mode/opt caffe2/benchmarks/dynamo:torchbench
```

Differential Revision: D63330224

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136548
Approved by: https://github.com/Skylion007
2024-09-25 20:47:32 +00:00
803ce507f1 Log structured logging overhead to dynamo compile (kinda) (#136142)
Summary:
X-link: https://github.com/pytorch/benchmark/pull/2454

This adds structured logging overhead at a per compile basis to compilation metrics.

To do so, we track the frame_id_frame_compile_id that trace_structured uses to categorize compiles, and use that as the key in our timing table.

Implementation notes:
- If there's times we call trace_structured without a compile id, the time won't be measured. Not really a good way around that today given the compile id framework of compilation metrics. Strobelight is still the best way to measure on a per job basis.
- We don't actually measure the time it takes to log the compilation metrics itself. Fundamentally, it's not possible to log this properly if we're storing the logging number *in* compilation metrics, since there's no way to measure it before we do it(unless we want discrepancies between dynamo_compile and tlparse, which seems suboptimal). Hopefully for a large job, the cost of structured_logging compilation metrics itself is small.
- I wanted to use frame_phase_timing here, but there's a bunch of ids to iron out, and I don't really want to deal with that headache. compilation_time_metrics is sort of what I want, but that isn't by frame/compile id, so it's also a bit off. Putting it into torch.logging as a separate thing so logging tracks its own overhead seems fine, though.

Test Plan:
Run benchmarks/nanogpt and staging logger. See that the new compilation metric is logged to the staged dynamo_compile table:

https://fburl.com/scuba/logger_staging_jjwu_30582a48f1ff9cf5f4ac50a4c40af/xazjg5xq

Note that the sum(structured_logging_overhead_s) / sum(entire_frame_compile_time) = 8.387 / 124.278  = 6%, which seems reasonable as the overhead for a small compilation like this.

You can also look at samples for a more detailed log of this.

Reviewed By: oulgen

Differential Revision: D62643611

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136142
Approved by: https://github.com/bobrenjc93
2024-09-19 16:11:38 +00:00
dbeb8a1691 Render log filepaths that are not anchored in torch's directory in a reasonable way (#135165)
For example, if I do TORCH_LOGS=fbscribelogger I'll get:

```
I0904 17:59:07.567000 3672513 fbscribelogger/__init__.py:161] stop
```

instead of

```
I0904 12:46:15.332000 2930287 ../../../../../home/ezyang/local/a/pytorch-env/lib/python3.10/site-packages/fbscribelogger/__init__.py:161] stop
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135165
Approved by: https://github.com/Skylion007
2024-09-05 16:48:09 +00:00
f754c0ae1b [easy] rm duplicate definition for inductor in TORCH_LOGS documentation (#134480)
already defined in
2eb9339b71/torch/_logging/_internal.py (L286-L287)

Test Plan: Sandcastle run

Differential Revision: D61806088

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134480
Approved by: https://github.com/eellison, https://github.com/mlazos
2024-08-27 20:15:10 +00:00
ad8bdfae1e add compiled_autograd to programmatic set_logs API (#134162)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134162
Approved by: https://github.com/yf225, https://github.com/jansel
ghstack dependencies: #134186, #134200, #134205, #134286, #134290
2024-08-24 12:06:36 +00:00
f037803290 Add ChromiumEventLogger, log FXGraphCache and AOTAutogradCache (#132864)
This PR implements ChromiumEventLogger in all @dynamo_timed events. For each dynamo timed call, we log:
- A start event before starting the function execution
- An end event after finishing the function execution
- An extra pair of start/end events for any phase names included in dynamo.

Separately, this also gives us the ability to log instant events. I use them to log cache hits/misses as a first step. The little arrows on the bottom of the UI are cache hits/misses, and you can look at cache details by clicking each triangle.

The outputted chromium trace events can be viewed in perfetto for a timeline of an execution. Here's what it looks like for a run of nanogpt:
![image](https://github.com/user-attachments/assets/cb9e6c7a-1acf-45e6-8a27-6651d9ae6132)

And another with warm start:
![image](https://github.com/user-attachments/assets/cd9709bc-59ef-4da1-a7dd-10b1a0ab9b8f)

Trace events are based around the JSON Event format: https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview

We may want to switch to the less deprecated Protobuf format later, but so far I don't see any features we care about supported there.

Internal FB employees can see a link to this in the tlparse output:
https://interncache-all.fbcdn.net/manifold/tlparse_reports/tree/logs/.tmpVi1FIl/dedicated_log_torch_trace_bb4zl_bc.log/index.html

I'll also work on logging these

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132864
Approved by: https://github.com/aorenste
2024-08-10 01:15:53 +00:00
5cb05a82b4 [BC breaking] move benchmarking + prefer inductor path (#132827)
move benchmarking out of `torch._inductor.runtime.runtime_utils` and into `torch._inductor.runtime.benchmarking`, and prefer this path over directly accessing Triton's benchmarking

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132827
Approved by: https://github.com/eellison
2024-08-08 00:47:45 +00:00
a8f0979962 Add cudagraph static inputs logging (#132726)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132726
Approved by: https://github.com/anijain2305
2024-08-06 12:01:20 +00:00
e7eeee473c [BE][Easy][14/19] enforce style for empty lines in import segments in torch/_[a-c]*/ and torch/_[e-h]*/ and torch/_[j-z]*/ (#129765)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129765
Approved by: https://github.com/ezyang
2024-07-31 10:42:50 +00:00
56bb047449 [pt2] Increase dynamo/inductor default log level to info (#131311)
Summary: Avoid the logs to be too verbose

Test Plan: CI

Differential Revision: D60028647

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131311
Approved by: https://github.com/oulgen
2024-07-22 17:33:29 +00:00