Add a few missing returns in torch._logging and use ruff to infer the obvious ones.
LazyStr now properly checks the return type of the Callable and the args and kwargs passed to it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155345
Approved by: https://github.com/ezyang
https://github.com/pytorch/pytorch/pull/152708 expanded support of `get_estimated_runtime` to many more types of `SchedulerNodes`. This caused an increase in compile time because we're always calling `get_estimated_runtime` to populate the metrics table. This PR adds a flag for this logging, which reduces the instruction count by 8%. Long term, we should probably merge metrics.py with TORCH_LOGS/tlparse (suggestion from @xmfan).
Update: added support for TORCH_LOGS for the metrics logging.
Test Plan:
mm_loop.py and many existing tests cover.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153506
Approved by: https://github.com/eellison
Fixes#153646
This PR refactors the logging behavior in the FX pass insert_deferred_runtime_asserts and runtime_assert.py to separate verbose/intermediate graph logs from the final output graph log. All verbose logs generated during the FX pass are now routed to a new artifact logger, graph_code_verbose, while only the final output graph remains logged to the original graph_code artifact.
Changes
- Added a new artifact logger: [graph_code_log = torch._logging.getArtifactLogger(__name__, "graph_code_verbose")]
- Updated all verbose/intermediate FX pass logs in [insert_deferred_runtime_asserts] to use the new graph_code_verbose artifact.
- Ensured that only the final output graph is logged to the original graph_code artifact.
- No changes to the FX pass logic or output—only logging behavior is affected.
Notes
This change is backward-compatible and does not affect the functional behavior of FX passes.
No changes to user-facing APIs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153775
Approved by: https://github.com/williamwen42
Summary:
Add new structured logging "inductor_pre_grad_graph"
This is for inductor provenance tracking front-end to load this graph from tlparse.
ghstack-source-id: 257581974
exported-using-ghexport
Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' //caffe2/test/dynamo:test_dynamo -- -r StructuredTraceTest
```
Differential Revision: D67150288
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143126
Approved by: https://github.com/desertfire
Here's the overview:
There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.
Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.
And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
Here's the overview:
There's a new contextmanager singleton called MetricsContext. Entering the MetricsContext is how we demarcate the boundary on which we'll create a single CompilationMetrics object, and therefore, a single dynamo_compile log entry. While we're inside the MetricsContext, we can update/set many different metrics. Most importantly: `dynamo_timed` can also update the in-progress MetricsContext. In the proposal here, we tell `dynamo_timed` that we want it to do so by providing the name of the MetricsContext field to increment. There can be many `dynamo_timed` calls in different parts of the code updating different fields. Then when the MetricsContext exits, that's when the logging of everything gathered finally happens. One potential footgun is trying to use `dynamo_timed` when we haven't entered the MetricsContext, but we assert on that problem. Another problem is that we re-enter the context recursively, but we watch for that and do the logging only when the outermost exits.
Some specifics:
* Introduce MetricsContext - a context manager that on exit, records the CompilationMetrics (which also logs to dynamo_compile).
* Completely remove the concept of frame_phase_timing. Instead, update the MetricsContext during compilation, either directly or via dynamo_timed.
* Remove some globals we previously used to accumulate counters to later populate a CompilationMetrics. We use CompilationMetrics set/update/increment APIs instead.
* `record_compilation_metrics` is now called on exit from MetricsContext.
* Populate legacy CompilationMetrics fields right before logging, inside `record_compilation_metrics`.
* Remove the one-off `add_remote_cache_time_saved` helper; capture that timing directly into the MetricsContext.
And specifically, several changes to dynamo_timed:
* "Modernize" the parameters and update all callsites accordingly.
* Move the backwards logging of the CompilationMetrics to the backwards compile location.
* Add a parameter for which CompilationMetrics field to update
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139849
Approved by: https://github.com/ezyang
ghstack dependencies: #140094
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Previously: https://github.com/pytorch/pytorch/pull/138052 but the implementation is done from scratch, so I open a new PR.
This implements the ability to save and load profiles of automatic dynamic decisions, so on subsequent runs we can directly make something automatically dynamic. Unlike the previous implementation, this cache is never enabled by default; instead, you have to specify a "job id" that says it's OK to share results. We will be able to automatically populate this id for internal MAST jobs but for generic OSS users you will have to explicitly opt into it.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Differential Revision: [D65065497](https://our.internmc.facebook.com/intern/diff/D65065497)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139001
Approved by: https://github.com/oulgen
Summary:
Added where logs are being added to constrain violations in draft export.
Example output:
```
1. Constraint violation error.
The specified input dynamic_shapes spec was found to be incorrect during tracing.
Specifically, this guard was added: Eq(s0, 3), where {'s0': "L['args'][0][0].size()[0]"}.
This occured at the following stacktrace:
File /data/users/angelayi/fbsource/buck-out/v2/gen/fbcode/1beb9df83fd74b9a/scripts/angelayi/draft_export/__test_draft_export__/test_draft_export#link-tree/torch/nn/modules/module.py, lineno 1736, in _wrapped_call_impl
File /data/users/angelayi/fbsource/buck-out/v2/gen/fbcode/1beb9df83fd74b9a/scripts/angelayi/draft_export/__test_draft_export__/test_draft_export#link-tree/torch/nn/modules/module.py, lineno 1747, in _call_impl
File /data/users/angelayi/fbsource/buck-out/v2/gen/fbcode/1beb9df83fd74b9a/scripts/angelayi/draft_export/__test_draft_export__/test_draft_export#link-tree/scripts/angelayi/draft_export/test_draft_export.py, lineno 138, in forward.
Because of this, we have modified the dynamic shapes structure to be the following:
```
dynamic_shapes = {'a': {0: 3}}
```
```
The result of this diff is also that `dynamic` logs are permanently turned on during draft export. Otherwise we cannot capture the `[guard added]` logs from symbolic_shapes.py.
Test Plan: `buck2 run @//mode/dev-nosan scripts/angelayi/draft_export:test_draft_export -- -r "test_shape_failure" `
Differential Revision: D64862374
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138748
Approved by: https://github.com/ezyang
Summary: Currently, calling `torch._logging.set_logs()` resets the log directory leading to multiple tlparse outputs. This prevents the dir from resetting after the first call.
Reviewed By: ezyang
Differential Revision: D64118047
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137793
Approved by: https://github.com/ezyang
Summary: If you actually import the module, you might end up with some import cycle situation where a module is imported too early and accesses things that are not initialized yet.
Test Plan:
sandcastle and ossci
```
TORCH_LOGS=+torch._inductor.codecache buck run mode/opt caffe2/benchmarks/dynamo:torchbench
```
Differential Revision: D63330224
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136548
Approved by: https://github.com/Skylion007
Summary:
X-link: https://github.com/pytorch/benchmark/pull/2454
This adds structured logging overhead at a per compile basis to compilation metrics.
To do so, we track the frame_id_frame_compile_id that trace_structured uses to categorize compiles, and use that as the key in our timing table.
Implementation notes:
- If there's times we call trace_structured without a compile id, the time won't be measured. Not really a good way around that today given the compile id framework of compilation metrics. Strobelight is still the best way to measure on a per job basis.
- We don't actually measure the time it takes to log the compilation metrics itself. Fundamentally, it's not possible to log this properly if we're storing the logging number *in* compilation metrics, since there's no way to measure it before we do it(unless we want discrepancies between dynamo_compile and tlparse, which seems suboptimal). Hopefully for a large job, the cost of structured_logging compilation metrics itself is small.
- I wanted to use frame_phase_timing here, but there's a bunch of ids to iron out, and I don't really want to deal with that headache. compilation_time_metrics is sort of what I want, but that isn't by frame/compile id, so it's also a bit off. Putting it into torch.logging as a separate thing so logging tracks its own overhead seems fine, though.
Test Plan:
Run benchmarks/nanogpt and staging logger. See that the new compilation metric is logged to the staged dynamo_compile table:
https://fburl.com/scuba/logger_staging_jjwu_30582a48f1ff9cf5f4ac50a4c40af/xazjg5xq
Note that the sum(structured_logging_overhead_s) / sum(entire_frame_compile_time) = 8.387 / 124.278 = 6%, which seems reasonable as the overhead for a small compilation like this.
You can also look at samples for a more detailed log of this.
Reviewed By: oulgen
Differential Revision: D62643611
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136142
Approved by: https://github.com/bobrenjc93
For example, if I do TORCH_LOGS=fbscribelogger I'll get:
```
I0904 17:59:07.567000 3672513 fbscribelogger/__init__.py:161] stop
```
instead of
```
I0904 12:46:15.332000 2930287 ../../../../../home/ezyang/local/a/pytorch-env/lib/python3.10/site-packages/fbscribelogger/__init__.py:161] stop
```
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135165
Approved by: https://github.com/Skylion007
move benchmarking out of `torch._inductor.runtime.runtime_utils` and into `torch._inductor.runtime.benchmarking`, and prefer this path over directly accessing Triton's benchmarking
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132827
Approved by: https://github.com/eellison