We want users to be able to define custom ops in C++ but put the
abstract impl in Python (since it is easier to write them in Python and
the abstract impl better models device semantics and data-dependent
operators).
`m.impl_abstract_pystub(opname, python_module, context)` declares the
abstract_impl of the operator to exist in the given python module.
When the abstract_impl needs to be accessed (either via FakeTensor or
Meta), and it does not exist, the PyTorch Dispatcher will yell
with a descriptive error message.
Some details:
- We construct a new global AbstractImplPyStub mapping in
Dispatcher.cpp. Read/write to this map is protected by the Dispatcher
lock.
- We add a new Meta Tensor fallback kernel. The fallback errors out if there is
no meta kernel, but also offers a nicer error message if we see that there is
a pystub.
- We create a `torch._utils_internal.throw_abstract_impl_not_imported_error`
helper function to throw errors. This way, we can throw different error
messages in OSS PyTorch vs internal PyTorch. To invoke this from C++, we
added a PyInterpreter::throw_abstract_impl_not_imported_error.
Differential Revision: [D49464753](https://our.internmc.facebook.com/intern/diff/D49464753/)
Differential Revision: [D49464753](https://our.internmc.facebook.com/intern/diff/D49464753)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109529
Approved by: https://github.com/ezyang, https://github.com/bdhirsh
The PyTorch Dispatcher's "no kernel found for DispatchKey" error message
is a bit long and winded. This PR adds a way to add a custom error
callback and changes the CustomOp API to use the custom error callback
to deliver better error messages.
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101015
Approved by: https://github.com/ezyang
Applies so more fixes to headers that may have been missed before for performance optimization.cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10 @EikanWang @ezyang since this more in the series of the clang-tidy fixup
This is PR fixes 3 main issues:
1. Use emplacement more in headers
1. Avoid unnecessary copies and use const ref when possible
1. Default any special functions when possible to make them potentially trivial and more readable.
1. There is also one change in this PR that tries to prevent unnecessary math promotion, the rest of these changes are in another PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91445
Approved by: https://github.com/ezyang
See strategy at PythonOpRegistrationTrampoline.cpp for the
big picture.
Along the way, I made OperatorHandle support == and hashing,
and slightly changed the low level python_dispatch impl API
to disallow empty strings for dispatch key, which had the knock
on effect of requiring us to explicitly make sure we pass in
CompositeImplicitAutograd if we would have passed in "" (I didn't apply
this to the rest of the file because I'm lazy.)
Test strategy is we delete the logic for preventing Python op
registrations in torch from being skipped in a torchdeploy context
and show CI still works.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87162
Approved by: https://github.com/anjali411, https://github.com/bdhirsh
Previously, our handling for contiguity was inconsistent in the following ways:
- is_strides_like 2d/3d and is_non_overlapping_and_dense always were computed
based on sizes_and_strides_, even if you had symbolic ints
- Furthermore, even if you set custom policy for strides, these quantities were
not overridable by subclasses
- Furthermore, we didn't even store these fields on ExtraMeta
- We duplicate implementations of compute_contiguous (plain, channels last,
channels last 3d)
- We inconsistently called refresh_numel()/refresh_contiguous(), versus
recomputing it ourselves
This factor makes a consistent strategy for all of the boolean fields, and
for numel computation. After this refactor:
- All layout boolean fields are interposable via strides policy
and can be overridden from Python; you will never access a garbage field
- All layout boolean fields are on ExtraMeta
- You can always call refresh_numel/contiguous, no matter if your Tensor is
contiguous or not
- The numel/layout boolean fields are always populated consistently with
the sizes strides fields (either on Tensor or ExtraMeta), even if you
have custom policy
- There is only one implementation of the actual computation logic
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D39907696](https://our.internmc.facebook.com/intern/diff/D39907696)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85858
Approved by: https://github.com/albanD
Signed-off-by: Edward Z. Yang <ezyangfb.com>
From @ezyang's original PR:
There are a number of situations where we have non-backend kernels (e.g., CompositeImplicitAutograd, batching rules) which we would like to port to Python, but we have no way to integrate these ports with the overall system while using preexisting C++ registrations otherwise. This PR changes that by introducing a Python dispatcher (which can have its own kernels directly in Python), which can be interpose over ordinary C++ dispatch. The ingredients:
We introduce a new PythonDispatcher dispatch key, that has the same tenor as FuncTorchDynamicLayerFrontMode: it works by getting triggered before every other dispatch key in the dispatch key, and shunting to a Python implementation
The Python dispatcher is a per-interpreter global object that is enabled/disabled via the guard EnablePythonDispatcher/DisablePythonDispatcher. We don't make it compositional as I have no idea what a compositional version of this feature would look like. Because it is global, we don't need to memory manage it and so I use a simpler SafePyHandle (newly added) to control access to this pointer from non-Python C++. Like __torch_dispatch__, we use PyInterpreter to get to the Python interpreter to handle the dispatch.
I need to reimplement dispatch table computation logic in Python. To do this, I expose a lot more helper functions for doing computations on alias dispatch keys and similar. I also improve the pybind11 handling for DispatchKey so that you can either accept the pybind11 bound enum or a string; this simplifies our binding code. See https://github.com/pybind/pybind11/issues/483#issuecomment-1237418106 for how this works; the technique is generally useful.
I need to be able to call backend fallbacks. I do this by permitting you to call at a dispatch key which doesn't have a kernel for the operator; if the kernel doesn't exist, we check the backend fallback table instead.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84826
Approved by: https://github.com/ezyang
A longstanding confusion in the implementation of fake tensor and proxy tensor is what to do about torch.ops.aten.sym_sizes and related calls. In particular, when you have a tensor that (1) has symbolic shapes and (2) has a `__torch_dispatch__` call, previously, you would always get `__torch_dispatch__` calls for sizes/strides query, *even if you didn't request it* via the dispatch kwargs in `make_wrapper_subclass`.
The reason for this is because we were previously mixing several concepts: "I want to dispatch to Python", "I want to call a virtual method" and "I have dynamic shapes". A single boolean variable controlled all of these things, and so it was not possible to understand inside TensorImpl what the user had actually originally requested.
In this PR, we track each of these concepts individually so that we can preserve user intent. Then, we combine these into a single "policy" variable that controls whether or not we can use the fastpath or not. For the policy to trigger, we only need one of the exceptional cases to be true.
Billing of changes:
* Rename `set_sizes_strides_policy` to `set_custom_sizes_strides`; in general, you cannot DIRECTLY set policy; you have to indirectly set it by the public functions.
* Some helpers for sizes and strides, since it's more complicated (as it is an enum, rather than just bools as is the case for device and layout). `matches_python_custom` is used to test the Python dispatch user ask. `matches_policy` does the policy test (only used in the user facing functions.)
* I reorged the accessor methods so that they are more logical. This makes the diff bad, so I recommend reading the final code directly.
* The default custom implementations now more reliably call their default() implementations
* As bonus refactor, I devirtualized some functions that don't need to be virtual
* `set_sym_sizes_and_strides` is renamed to `set_sizes_and_strides` to make it easier to use in template contexts; it optionally takes a storage offset now so you can set all three values at the same time. If you use the SymInt overload but there are no symbolic integers, we give you a normal resize.
* This adds `sym_storage_offset` since we had that in the symbolic shapes branch and there's no reason not to put it in (and it reduces merge conflicts)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84641
Approved by: https://github.com/wconstab
I realized that we can deal with the dead vtable problem by...
introducing another indirection! The resulting code is worse
(you have to do one more dereference to get to the vtable), but
the reduction in boilerplate is, IMO, worth it.
I did this refactor because I'm about to add a lot more methods
to PyInterpreter to handle expunging SymInt from TensorImpl.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84388
Approved by: https://github.com/albanD
Add `TensorImpl::sym_strides`, bind it to python with `torch.ops.aten.sym_strides`, and use it in `ProxyTensor` and `FakeTensor`.
Before, `ProxyTensor` was generating `ProxySymInt`'s for the sizes, but not for the strides. Internally we still represent strides with a `SymIntArrayRef` though, so I ran into some weird issues where sizes were showing up as `ProxySymInt`, but strides were `PySymInt`'s.
Differential Revision: [D38594558](https://our.internmc.facebook.com/intern/diff/D38594558)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/81300
Approved by: https://github.com/ezyang
This PR relands sym_numel #82374 and fixes the ios build break in this commit : 8cbd0031c5
which was a type mismatch in an equality.
### Description
<!-- What did you change and why was it needed? -->
### Issue
<!-- Link to Issue ticket or RFP -->
### Testing
<!-- How did you test your change? -->
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82731
Approved by: https://github.com/malfet
I noticed that in some situations torch dispatch modes were being
invoked with a mode active, which isn't supposed to happen (we
disable modes before calling into the user mode.) I also noticed that
I was getting a warning that I had a deprecated non-static definition of
torch dispatch on an argument even though there wasn't any.
It turns out this is because modes were part of the overloaded arguments
list in the Python fallback kernel for torch dispatch. This is wrong;
instead we should rely on the actual dispatching function to consult
modes. This makes the code simpler.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80992
Approved by: https://github.com/zou3519