Commit Graph

9 Commits

Author SHA1 Message Date
cyy
df458be4e5 [4/N] Apply py39 ruff and pyupgrade fixes (#143257)
```torch/fx/passes/annotate_getitem_nodes.py``` was changed to support the new type hinting annotations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143257
Approved by: https://github.com/justinchuby, https://github.com/albanD
2025-01-04 10:47:51 +00:00
d8c8ba2440 Fix unused Python variables in test/[e-z]* (#136964)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136964
Approved by: https://github.com/justinchuby, https://github.com/albanD
2024-12-18 23:02:30 +00:00
c947a7d38e Fix unused Python variables in test/nn (#143396)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143396
Approved by: https://github.com/mikaylagawarecki
2024-12-18 03:30:54 +00:00
258f47fc0b Add padding_side to pad_sequence with "left" and "right" options ("right" as default) (#131884)
Fixes #10536

Reattempt of #61467. Thank you so much to @mskoh52 for your excellent work!

As I was trying to create a more efficient LLM data collator, I realized that `pad_sequence` only supports right padding, even though left padding is a very common format for LLMs, like Llama and Mistral.

The proposed alternative implementation was to use multiple flips, which tends to be 1.5x-2x slower. Instead we can add a [`padding_side` parameter as there is for for Hugging Face tokenizers](9d6c0641c4/src/transformers/tokenization_utils_base.py (L1565)), which requires only a very small change in the C++ code.

Here are the benchmarks of the new implementation!

`float32`:

![eaaa95ef-9384-45d2-be56-6898bc1d3514](https://github.com/user-attachments/assets/3b0eb309-e5a0-4a4d-97bb-4e3298783dbb)

`bool`:

![892f32da-8d9a-492b-9507-18d3f0a41e8e](https://github.com/user-attachments/assets/6824ea15-7d4e-4b89-95f0-8546635f0c2e)

Code:

```python
from __future__ import annotations

import random
import time
from typing import Literal

import numpy as np
import torch

def pad_sequence_with_flips(
    sequences: list[torch.Tensor],
    batch_first: bool = False,
    padding_value: int | float | bool = 0.0,
    padding_side: Literal["left", "right"] | str = "left",
) -> torch.Tensor:
    if padding_side == 'right':
        padded_sequence = torch._C._nn.pad_sequence([t.flatten() for t in sequences], batch_first=batch_first, padding_value=padding_value)
    elif padding_side=='left':
        padded_sequence = torch._C._nn.pad_sequence([t.flatten().flip(0) for t in sequences], batch_first=batch_first, padding_value=padding_value)  # pyright: ignore[reportArgumentType]
        padded_sequence = padded_sequence.flip(int(batch_first))
    else:
        raise ValueError(f"padding_side should be either 'right' or 'left', but got {padding_side}")

    return padded_sequence

sequence_lengths: list[int] = []

flip_left_pad_times: list[float] = []
flip_left_pad_times_std: list[float] = []

left_pad_times: list[float] = []
left_pad_times_std: list[float] = []

RUNS_PER_LOOP: int = 100

for i in range(1, 7):
    sequence_length = i * int(1e6) // 6
    sequence_lengths.append(sequence_length)

    sequences = [torch.randint(0, 2, (random.randint(1, sequence_length),), dtype=torch.bool) for _ in range(64)]

    inner_left_pad_times: list[float] = []
    inner_right_pad_times: list[float] = []

    inner_flip_left_pad_times: list[float] = []
    inner_flip_right_pad_times: list[float] = []

    for _ in range(RUNS_PER_LOOP):

        start = time.perf_counter()
        torch._C._nn.pad_sequence(sequences, batch_first=True, padding_value=False, padding_side="left")
        end = time.perf_counter()
        inner_left_pad_times.append(end - start)

        start = time.perf_counter()
        pad_sequence_with_flips(sequences, batch_first=True, padding_value=False, padding_side="left")
        end = time.perf_counter()
        inner_flip_left_pad_times.append(end - start)

    left_pad_times.append(sum(inner_left_pad_times) / len(inner_left_pad_times))
    left_pad_times_std.append(np.std(inner_left_pad_times))

    flip_left_pad_times.append(sum(inner_flip_left_pad_times) / len(inner_flip_left_pad_times))
    flip_left_pad_times_std.append(np.std(inner_flip_left_pad_times))

    print(f"Sequence Length: {sequence_length}, Left Pad Time: {left_pad_times[-1]}, Left with Flips Pad Time: {flip_left_pad_times[-1]}")

import matplotlib.pyplot as plt

plt.plot(sequence_lengths, left_pad_times, label="new pad_sequence left")
plt.scatter(sequence_lengths, left_pad_times)
plt.errorbar(sequence_lengths, left_pad_times, yerr=left_pad_times_std, linestyle='None', marker='^')

plt.plot(sequence_lengths, flip_left_pad_times, label="old pad_sequence left (2 flips)")
plt.scatter(sequence_lengths, flip_left_pad_times)
plt.errorbar(sequence_lengths, flip_left_pad_times, yerr=flip_left_pad_times_std, linestyle='None', marker='^')

plt.xlabel("Sequence Length")
plt.ylabel("Time (s)")
plt.legend(loc="upper right")

# Sequence Length: 166666, Left Pad Time: 0.06147645162009212, Left with Flips Pad Time: 0.09842291727001794
# Sequence Length: 333333, Left Pad Time: 0.08933195920990329, Left with Flips Pad Time: 0.15597836187991562
# Sequence Length: 500000, Left Pad Time: 0.08863158334006585, Left with Flips Pad Time: 0.15224887342999863
# Sequence Length: 666666, Left Pad Time: 0.10524682551997103, Left with Flips Pad Time: 0.18177212480995877
# Sequence Length: 833333, Left Pad Time: 0.11801802741003485, Left with Flips Pad Time: 0.20821274195001024
# Sequence Length: 1000000, Left Pad Time: 0.131894061660023, Left with Flips Pad Time: 0.23223503091008751
```

Co-authored-by: mskoh52 <mskoh52@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131884
Approved by: https://github.com/ezyang
2024-08-07 15:53:07 +00:00
a625705290 Enable UFMT on all of test/nn (#123809)
Part of: #123062

Ran lintrunner on:

- `test/nn`

with command:

```bash
lintrunner -a --take UFMT --all-files
```

Co-authored-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123809
Approved by: https://github.com/mikaylagawarecki
2024-04-12 18:32:25 +00:00
2f95a3d0fc [BE]: Apply ruff PERF fixes to torch (#104917)
Applies automated ruff fixes in the PERF modules and enables all automatic ones. I also updated ruff which applied some additional fixes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/104917
Approved by: https://github.com/ezyang, https://github.com/albanD
2023-07-11 20:45:21 +00:00
b72bddabe9 Move empty check to the start of _pack_padded_sequence (#94885)
Fixes #94122.
Move empty check to the start of `_pack_padded_sequence`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94885
Approved by: https://github.com/kshitij12345, https://github.com/jgong5, https://github.com/malfet
2023-03-22 04:16:58 +00:00
046e88a291 [BE] [3/3] Rewrite super() calls in test (#94592)
Rewrite Python built-in class `super()` calls. Only non-semantic changes should be applied.

- #94587
- #94588
- #94592

Also, methods with only a `super()` call are removed:

```diff
class MyModule(nn.Module):
-   def __init__(self):
-       super().__init__()
-
    def forward(self, ...):
        ...
```

Some cases that change the semantics should be kept unchanged. E.g.:

f152a79be9/caffe2/python/net_printer.py (L184-L190)

f152a79be9/test/test_jit_fuser_te.py (L2628-L2635)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94592
Approved by: https://github.com/ezyang, https://github.com/seemethere
2023-02-12 22:20:53 +00:00
dd67d52b57 [nn] split rnn_utils test from test_nn.py (#83675)
Ref: https://github.com/pytorch/pytorch/issues/63085
Proposed folder structure
```
-> test
  -> nn
    -> test_conv.py
    -> test_pooling.py
    -> .....
```

This PR: Moves test related RNN utilities to a different file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83675
Approved by: https://github.com/albanD
2022-08-23 08:34:39 +00:00