As part of better engineering week, we would like to improve out type support to improve dev experience in dynamo
This PR adds strict typing support to a critical set of files for dynamo, `source.py` and the base `_guards.py`
Running
```
mypy torch/_dynamo/source.py torch/_guards.py --linecount-report /tmp/coverage_log
```
| -------- | Lines Unannotated | Lines Total | % lines covered | Funcs Unannotated | Funcs Total | % funcs covered |
| -------- | ------- | -------- | ------- | ------- | ------- | ------- |
| Main | 1227 | 2208 | 55.57% | 207 | 362 | 57.18% |
| This PR | 2217 | 2217 | 100.00% | 362 | 362 | 100.00% |
| Delta | +990 | +9 | +44.43% | +155 | 0 | +42.82% |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158397
Approved by: https://github.com/anijain2305
Differential Revision: D78431075
For #158366
- Calls runtime asserts pass for HOP subgraphs (in reenter_make_fx)
- For while_loop only (can be expanded), clones input tensors for subgraph tracing, so unbacked memos (item, nonzero, etc.) aren't reused
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158467
Approved by: https://github.com/ydwu4
https://github.com/pytorch/pytorch/pull/154193 gets reverted due to a test failure. The root cause being that: an executorch pass turns int inputs into a scalar tensor in cond's subgraph. The pass have been around on the critical path of executorch since two years ago. Changing it would be difficult. So we just allow non-fake inputs for check input mutation and aliasing, which shoudn't affect the correctness of the analysis.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158798
Approved by: https://github.com/pianpwk
We want to do it for two reasons:
1. It's tedious for users to manually turn on capture_scalar_outputs=True when compiling map and scan with inductor, where we decomposing them into while_loop and use the idx tensor.item() to select a slice of output buffer and write into it. This pr turns on the flag by default.
2. a graph break caused by capture_scalar_outputs=False would cause the hop to fail, and we should turn it on by default so that the error message is more meaningful.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158480
Approved by: https://github.com/zou3519
This is enough to get @XilunWu 's stack in a state where his flex_attention DTensor implementations worked E2E for me. It also required these changes on the DTensor side, to properly add a DTensor rule for flex backward: P1789852198
There are two problems:
(1) in the normal dispatcher, we have a precedence ordering between modes and subclasses. Modes are dispatched to first, but modes are allowed to return NotImplemented, giving subclasses a chance to run.
This normally happens automatically in `FakeTensorMode.__torch_dispatch__` and `FunctionalTensorMode.__torch_dispatch__`. However, since HOPs implement these two modes themselves, HOPs do not get this benefit. For now, I ended up hardcoding this `NotImplemented` logic directly into the functional/fake rules for flex attention.
Having to do this for every HOP seems a bit painful. If we could plumb every HOP through `Fake[|Functional]TensorMode.__torch_dispatch__` then we would get this support. Another option could be to just assume that most HOP <> mode implementations want the same treatment by default, and hardcode this `NotImplemented` logic into `torch/_ops.py`. I'm not sure if we'd need a way for the HOP to opt out of this though.
(2) We were hardcoding a call to flex attention's fake implementation in dynamo to run fake prop. This is technically wrong for subclasses, because it doesn't give subclasses the chance to interpose on the op and desugar it before fake prop runs. I tweaked dynamo's logic to call the op, and let the dispatcher handle invoking the fake implementation.
**Testing** Xilun is adding some DTensor tests in his PR that will end up testing this logic. If folks would prefer, though, I can try to add a test that uses another subclass instead that is maybe more basic.
This is the tlparse that his DTensor test gnerated for me: https://manifold.edge.x2p.facebook.net/v0/read/tree/logs/hirsheybar/0196c1d3-a9a2-46ea-a46d-aa21618aa060/custom/rank_0/index.html?bucketName=tlparse_reports&apiKey=tlparse_reports-key&withPayload=1&timeoutMsec=10000
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151719
Approved by: https://github.com/ydwu4
Co-authored-by: drisspg <drisspguessous@gmail.com>
Previously, we didn't disable functionalization key when materializing backward graph. This causes the torch.zeros_like call for the case where grad is None to return a functional tensor that's not tracked by the proxy tensor mode.
This PR fixes it by putting the tracing code under disable functionalization ctx manager.
Fixes https://github.com/pytorch/pytorch/issues/153437.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154343
Approved by: https://github.com/zou3519
This PR creates two utils for generating a schema for hops from example inputs and use base hop as an exmaple.
1. HopArgumentInfoGen creates an argument or an output schema with mutation information.
2. CFuncitonSchemaGen piece together the argument info of inputs and outputs and produces torch._C.FunctionSchema.
is_write attribute of argument info can be computed. Note that the is_write annotation only works when the inputs are flattened (e.g. cannot support mutation inside tuple). We need special handling the case where we have tuple inputs like cond.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149688
Approved by: https://github.com/zou3519
Somehow the torch._dynamo.is_compiling is changed to torch.compiler.is_compiling(), which also checks whether we're exporting. This is not caught by cI because we don't have an export test for scan.
Changing to torch.compiler.is_dynamo_compiling and added a test.
edit: piggyback the re-tracing support in this PR. Related code in combine_fn_is_normalized.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149903
Approved by: https://github.com/zou3519
The "PendingUnbackedSymbolNotFound" error is when an unbacked symbol is created within a piece of code, but this symbol never appears in any of the outputs. I believe the original intention is to help catch incorrectly written meta kernels, where users might've unintentionally created an unbacked symbol but never used it anywhere, but in our case this is intentional. An example is the following test case:
```python
def test_pending_unbacked(self):
class M(torch.nn.Module):
@mark_compile_region
def gn(self, x):
u = x[0].item()
return x * u
def forward(self, x):
for _ in range(4):
x = self.gn(x)
return x
torch._dynamo.config.capture_scalar_outputs = True
torch.compile(M())(torch.randn(8))
```
This fails with the error:
```
torch._dynamo.exc.InternalTorchDynamoError: PendingUnbackedSymbolNotFound: Pending unbacked symbols {zuf1} not in returned outputs (FakeTensor(..., size=(8,)),) .
```
In this case, creating the unbacked symbol is intentional, so we can bypass this using `fake_mode.shape_env.ignore_fresh_unbakced_symbols()`.
Differential Revision: [D71298926](https://our.internmc.facebook.com/intern/diff/D71298926)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149297
Approved by: https://github.com/zou3519
ghstack dependencies: #149296
This PR implements the idea of checking input mutations through tensor version and check aliasing via storage from @zou3519. Previously, we rely on whether there's a in place op that takes placeholder input, which doesn't take views into account.
When writing the PR, I also noticed a bug in previous input mutation checking logic: we were checking the whether there are operators functionalized_f where all the mutating ops have been replaced so we won't be able to detect any thing.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145298
Approved by: https://github.com/zou3519
The idea is the parent hop's fake tensor mode should ignore the newly allocated unbacked symints in subgraph because the bindings of unbacked symbols in the subgraph should already be done when we trace the subgraph. E.g. if there's an operator in subgraph that produces unbacked symints, the track_tensor_tree logic for that operator will take care of it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142031
Approved by: https://github.com/zou3519
ghstack dependencies: #142162
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
There are 4 parts (they are hard to further break into smaller ones cause they're highly coupled) in this PR:
1. **Whenever we call create_graph_input, we try to bind the symbols in the graph input.**
We've enforced the invariant that all create_graph_inputs calls must provide an example value, we could intercept at the create_graph_input calls (This PR only handles free symbols in tensors).
2. **We cache the bound_symbols** to avoid lift the same symbol repeated.
3. For lifted symbols, we re-used **lifted_freevars** i.e. the mapping between symbol proxy in parent graph to the lifted phs in current subgraph, which we handle lifted tensors. In this way, all hops that supports lifted tensors should be able to handle lifted_symints automatically (at least in dynamo part).
4. For **unbacked symbols** created during tracing, we need to also bound these symbols to its proxy. This is to support the tests cases where we want to lift unbacked symbols as input. We need the proxy of the unbacked symbol in parent graph in order to properly create the args to the hop.
5. We change all the tests after free symbols are lifted in subgraphs. And also supports the lifted symbols in existing higher order ops.
**The interaction of nested tracers:**
The previous design for lifting tensor closures is that: suppose we're in nested tracers, whenever we see a new proxy that's not created by create tracer, we recursively look for the proxy in parent tracer until we find the tracer that creates this proxy (either a placeholder or some intermediate results). More detail is in Note [Nested SubgraphTracer and free_variable handling].
Given the above design, the plan for lifting the free symbols is: whenever we lift a free tensor to be the inputs of current subgraph, we'll look at the symbols in it and bind the symbols at the same time.
For example, suppose we have the following function:
```python
def f(x: [s1, s2]):
def true_f():
def true_f_inner():
return x.sin()
```
what will happen in time order:
1. we create a subtracer 1 and start to speculate the outer cond's true_f
2. we create a another subtracer 2 and start to speculate the inner cond's true_f_inner.
3. dynamo realize the tensor input x by calling wrap_tensor in top-level to create graph input x (tracer 0), we bind the symbol s1, s2 after ph for x is created. So the graph now looks like:
```python
def gm(s1, s2, x):
```
4. when seeing TensorVariable.call_method of x, tracer2 wants to create a call_function(sin, proxy_of_x), but it finds that proxy_of_x is not created by current tracer. So it recursively look up its parent tracer1 and find parent tracer1 also doesn't track this proxy_of_x then it finds the root tracer0, who is the creator of it and tracks it as a ph. Then tracer 1 create_graph_input to lift the closure to its input ph1 and add (proxy_of_x: ph1) k-v in **lifted_freevars** of tracer 1.
Now the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(x):
```
5. Since there are free symbols inside this new tensor input, tracer 1 also binds the symbols (maybe_bind_symbol), which calls create_graph_input for s1 and s2. Now the graph looks like
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
```
6. then it goes back to tracer 2, and call create_graph_input for x and get ph2, tracer 2's **lifted_freevars** records (ph1, ph2). and tracer 2 also binds the symbols in this new tensor input. Now the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner(s1, s2, x):
```
7. Finally the sin call_function node is created by tracer 2.
**This PR also handles the following cases:**
- What if we lift two tensors share the same symbol? e.g. x1 [s1, s2], x2 [s2, s3]? Each subtracer maintains bound_symbols as a cache that maps a symbol.expr to its proxy in current tracer. So when we see x1, we'll track s1 and s2 as inputs and bound s1 to ph1, s2 to ph2. So when we try to bind symbols of x2, s2 will already be tracked so no graph input is created.
- what if a subgraph close over a symint? e.g.
```python
def f(x):
def true_f():
c = x.size(0)
def true_fn_inner():
return c
```
When we speculate true_fn_inner, we find proxy_of_c is not tracked by tracer 2, so it recursively looks up its parent. At this point, x and its symbols have been lifted as input of true_f (as a result of lifting x during tracing true_f in tracer 1. Specifically the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner():
```
So tracer 2 is able to find that s1 have been tracked as ph in tracer 1 so it returns back to gm and call create_graph_input on s1. The graph now looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner(s1):
return s1
```
- What if subgraph close over an unbacked symint? e.g.
```python
def f(x):
def true_f():
c = x.item()
def true_f_inner():
return c
```
When x.item() is called, proxy_of_c and its symnode variable is created for tracer 1, and we also call track_unbacked_symbols to record this relationship. So when tracer 2 finds proxy_of_c is not created by current tracer, it recursivelly looks up its parent tracer and finds that that expression u0 has been tracked as a result of track_unbacked_symbol in tracer 1. So it will stop the recursion and create_graph_input u0 in tracer 2. Graph looks like:
```python
def f(x):
def true_f(s1, s2, x):
c = x.item()
def true_gm_inner(u0):
return u0
cond(pred, true_gm_inner, false_gm_inner, (c,))
```
- what if subgraph close over a tensor with unbacked symint shape?
```python
def f(x):
def true_f():
c = x.item()
r = torch.randn((c,))
def true_f_inner():
return r + 1
```
This is the same as the case of closing over tensors with backed shapes. where we first lift r, then bind u0 in it, which recursively bind_symint of u0 in its parent and found u0 is tracked in parent tracer as a result of .item() call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138363
Approved by: https://github.com/zou3519