Commit Graph

22 Commits

Author SHA1 Message Date
a6084b71ed [BE][1/X] Phase out usage of use_max_autotune() (#155847)
`use_max_autotune()` is likely not what people expect it to be;

Originally, `use_max_autotune()` was setup to decide when we should include Triton templates as choices in GEMM autotuning. As expected, `use_max_autotune()=True` if `max_autotune=True` or `max_autotune_gemm=True`. However, with the addition of the offline GEMM autotuning cache two years back `use_max_autotune()=True` also in the case that `search_autotune_cache=True`; in this case though, `search_autotune_cache=True` should never trigger autotuning.

Over time, people have used `use_max_autotune()` likely without realizing that this gives unexpected behavior if `search_autotune_cache=True`. We could rename the method to be more clear, but prefer to phase it out entirely for maximal clarity.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/155847
Approved by: https://github.com/jingsh, https://github.com/masnesral
2025-06-14 03:16:20 +00:00
cb56df55dc [Inductor]Cleanup autotune_fallback_to_aten post-deprecation (#154331)
Fixes #153298

This PR is the 3rd and final step of #147479
All references to autotune_fallback_to_aten have been removed, and the feature is now deprecated.
All calls to should_fallback_to_aten() were also removed, as they were deemed unnecessary.

[henrylhtsang](https://github.com/henrylhtsang)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/154331
Approved by: https://github.com/henrylhtsang
2025-05-29 20:29:58 +00:00
c1dd75e4dc Add AOTI shim for _weight_int4pack_mm_cpu_tensor (#149031)
**Summary**
Previous implementation of shim did not align with the design and it was removed by https://github.com/pytorch/pytorch/pull/148907
This PR adds it back in the files of MKLDNN backend and re-enable the CPP wrapper UT.

**Test plan**
```
pytest -s test/inductor/test_cpu_cpp_wrapper.py -k test_woq_int4
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149031
Approved by: https://github.com/leslie-fang-intel, https://github.com/EikanWang, https://github.com/desertfire
2025-03-18 01:33:13 +00:00
ab81ca5053 [Inductor][CPU] Add GEMM templates for _weight_int4pack_mm_for_cpu with AVX512 (#146756)
**Summary**
It's part of the task to enable max-autotune with GEMM template for WoQ INT4 GEMM on CPU.

This PR adds GEMM templates for `torch.ops.aten_weight_int4pack_mm_for_cpu`. The micro kernel used for the templates is based on AVX512 and it's a copy of the ATen implementation of `torch.ops.aten_weight_int4pack_mm_for_cpu` with minor changes.

Due to better blocking and loop schedule, the GEMM template based implementation outperforms the ATen implementation in all cases we tested.

**Test plan**
```
python test/inductor/test_cpu_select_algorithm.py -k test_int4_woq_mm_avx512
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146756
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2025-03-03 00:56:29 +00:00
ca3aabc8e6 [Inductor][CPU] Add a lowering pass for _weight_int4pack_mm_for_cpu (#145250)
**Summary**
It's part of the task to enable max-autotune with GEMM template for WoQ INT4 GEMM on CPU.

This PR adds a lowering pass for `torch.ops.aten_weight_int4pack_mm_for_cpu`. This op is used for WoQ int4 in Torchao. The lowering pass is a prerequisite for max-autotune, which is planed to be enabled for this op in subsequent PRs.

**Test plan**
```
python test/inductor/test_mkldnn_pattern_matcher.py -k test_woq_int4
python test/inductor/test_cpu_cpp_wrapper.py -k test_woq_int4
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145250
Approved by: https://github.com/leslie-fang-intel, https://github.com/jerryzh168
ghstack dependencies: #145245
2025-02-13 08:40:12 +00:00
41b38f755c Revert "Reverting the PR adding Kleidiai-based int4 kernels (#145392)" (#145505)
https://github.com/pytorch/pytorch/pull/134124 was reverted by https://github.com/pytorch/pytorch/pull/145392 due to KleidiAI clone issue.

1. This reverts commit 0940eb6d44f3cf69dd840db990245cbe1f78e770 (https://github.com/pytorch/pytorch/pull/145392 )and Fixes KleidiAI mirror issue.
2. KleidiAI is now cloned from github mirror instead of arm gitlab

Change-Id: I7d6eee7214cd117d3057d615936fcc3ee6052fa2

Fixes https://github.com/pytorch/pytorch/issues/145273

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145505
Approved by: https://github.com/malfet
2025-01-23 18:50:59 +00:00
0940eb6d44 Reverting the PR adding Kleidiai-based int4 kernels (#145392)
Mitigation for https://github.com/pytorch/pytorch/issues/145273
Reverting https://github.com/pytorch/pytorch/pull/134124 and https://github.com/pytorch/pytorch/pull/144074

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145392
Approved by: https://github.com/ZainRizvi, https://github.com/malfet, https://github.com/atalman, https://github.com/digantdesai
2025-01-22 20:11:49 +00:00
94737e8a2a [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-20 19:32:03 +00:00
8136daff5a Revert "[ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)"
This reverts commit 4b82251011f85f9d1395b451d61e976af844d9b1.

Reverted https://github.com/pytorch/pytorch/pull/134124 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it breaks lots of internal build ([comment](https://github.com/pytorch/pytorch/pull/134124#issuecomment-2555953189))
2024-12-19 23:33:17 +00:00
4b82251011 [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-19 18:51:26 +00:00
14fe1f7190 Revert "[ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)"
This reverts commit d3ff2d42c28a2c187cbedfd8f60b84a4dfa2d6bf.

Reverted https://github.com/pytorch/pytorch/pull/134124 on behalf of https://github.com/malfet due to This broke S390 builds, includes cpuinfo unconditionally ([comment](https://github.com/pytorch/pytorch/pull/134124#issuecomment-2552560208))
2024-12-19 01:05:11 +00:00
d3ff2d42c2 [ARM][feat]: Add 4 bit dynamic quantization matmuls & KleidiAI Backend (#134124)
Description:
1. Quantize Linear Layer Weights to 4-bits:
Quantize the weights of the Linear layer to 4 bits, using symmetric quantization.
Pack two 4-bit weights into one uint8 container.
Choose a quantization scheme (channel-wise or group-wise), with the group size being a multiple of 32.

2. Prepare Quantized Weights, Scales, and Optional Bias:
After quantizing, obtain the quantized_weights, scales, and groupsize.
If the original Linear layer has a bias, prepare it as well.

3. Pack the Weights Efficiently:
Use torch.ops.aten._dyn_quant_pack_4bit_weight to optimally pack the weights, scales, and optional bias.
```python
packed_weights = torch.ops.aten._dyn_quant_pack_4bit_weight(weight, scales_and_zeros, bias, groupsize, in_features, out_features)
```
Input parameters should include:
in_features and out_features (the same as the Linear layer’s corresponding parameters).

4. Perform Dynamic Quantized Matrix Multiplication:
Use torch.ops.aten._dyn_quant_matmul_4bit to perform matrix multiplication with quantized weights.
```python
output = torch.ops.aten._dyn_quant_matmul_4bit(input, packed_weights,  groupsize, in_features, out_features)
```
Inputs required include:
The input tensor, packed_weights , groupsize, and the in_features and out_features.

API Usage: https://github.com/pytorch/pytorch/issues/143289

Model Perf :
7B Transformer model:
Prefill : 340 t/s
Decode  : 40  t/s
2B Transformer model
Prefill : 747 t/s
Decode  : 80  t/s

Tests:
python test/test_linalg.py -k test__dyn_quant_pack_4bit_weight
Ran 1 test in 0.016s

OK

python test/test_linalg.py -k test__dyn_quant_matmul_4bit
Ran 8 tests in 0.077s

OK

python test/test_linalg.py -k test_compile_dyn_quant_matmul_4bit
Ran 8 tests in 11.454s

Change-Id: Ia1672bad5e6ec94e64d8bb1971395d60f4b3a452

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134124
Approved by: https://github.com/digantdesai, https://github.com/malfet
2024-12-18 22:30:07 +00:00
20f24e3fbd [inductor][cpp] Add BMM kernel template for autotuning (#129772)
This PR adds the Cpp template for BMM, for FP32, FP16, and BF16. See #125683 for more background.

1.  Adds `CppBmmTemplate` class which inherits from `CppPackedGemmTemplate`. Given a number of worker threads `num_threads` and batch size `B`, execute the Gemm kernel. For the first `B - (B % num_threads)` batch inputs, run one sub-gemm problem per thread. Then for the remaining `B % num_threads` sub-gemms, we execute each subproblem using the parallelized Gemm kernel.
To manage this code, the `GEMM_TEMPLATE` from `CppPackedGemmTemplate` is rendered two different times, one with a single thread and one which includes the parallel OMP pragma.
2. Adapts `CppPackedGemmTemplate` to allow for child class. The `GEMM_TEMPLATE` is separated into different strings to allow for rendering by the child class. Slicing/indexing are adapted to allow for 3D BMM inputs. Additional methods `get_options()` and `_get_params_for_choices()` are added to reduce code duplication.

BMM within `dlrm` benchmark has a single input buffer which is used for but X and W inputs. This is currently not supported in this PR.

### Performance
On Granite/Sapphire Rapids, cpp_bmm template code uses AMX which requires an expensive transpose operation so the BMM op is rarely selected as faster than the existing external bmm kernel. As a result, speedup on SPR is identical with and without BMM code. Pass rate matches the rates for main exactly.

#### Test Summary on Granite Rapids
Test   Scenario | Comp Item | Date | Compiler | torchbench | huggingface | timm_models
-- | -- | -- | -- | -- | -- | --
Single Socket Multi-Threads | Pass   Rate | gemm autotune| inductor | 91%,   73/80 | 100%,   46/46 | 100%,   61/61
   |     |   |  bmm + gemm autotune | inductor | 91%,   73/80 | 100%,   46/46 | 100%,   61/61
  |  |  Geomean Speedup | gemm autotune| inductor | 2.15x | 1.91x | 2.52x
   |     |   |  bmm + gemm autotune | inductor | 2.15x | 1.96x | 2.53x
Single Core Single-Thread | Pass   Rate | gemm autotune | inductor | 91%,   73/80 | 100%,   46/46 | 100%,   61/61
   |    |   |  bmm + gemm autotune| inductor | 91%,   73/80 | 100%,   46/46 | 100%,   61/61
 |  | Geomean Speedup | inductor_locally_benchmark_586 | inductor | 2.43x | 1.56x | 2.60x
   |    |   |  inductor_locally_benchmark_585 | inductor | 2.45x | 1.56x | 2.63x

This is not the case on an older Skylake Xeon machine.
For the BMM ops contained in torchbench models, bmm performance improves by 1.10-2.64x.

#### BF16 28-core Skylake Xeon
| Model | Inductor | GemmAutotune | Gemm+BMM Autotune |
|--------|--------|--------|--------|
| BERT_pytorch | 1.233x | 2.597x | 2.608x |
| hf_DistilBert | 1.128x | 2.242x | 2.368x |
| hf_Reformer | 1.124x | 1.419x | 1.590x |
| hf_T5_base | 1.012x | 1.257x | 1.382x |
| hf_T5_large | 1.085x | 2.228x | 2.345x |

## Example BMM Code
```
#include <c10/util/Unroll.h>
#include <torch/csrc/inductor/aoti_torch/c/shim.h>

template <bool accum>
inline void cpp_bmm_micro_gemm_amx_kernel_32_2(
    AMXState& amx_state,
    const bfloat16* __restrict__ A,
    const bfloat16* __restrict__ B,
    float* __restrict__ C,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    uint8_t tilecfg_rows
) {
    // TODO(jgong5): add prefetch hint for A, B, C
    auto loadconfig = [](const amx_tilecfg& cfg) {
        _tile_loadconfig(&cfg);
    };
    const auto last_k_offset = K / 32 * 32;
    const auto tail_k_size = K - last_k_offset;
    if C10_LIKELY (last_k_offset > 0) {
        amx_state.configure(tilecfg_rows, 64, 32 / 16, 2, loadconfig);
    } else {
        amx_state.configure(tilecfg_rows, tail_k_size * sizeof(bfloat16), 32 / 16, 2, loadconfig);
    }
    auto load_c = [&]() {
        _tile_loadd(0, C + 0 * ldc + 0, ldc * sizeof(float));
        _tile_loadd(1, C + 0 * ldc + 16, ldc * sizeof(float));
        _tile_loadd(2, C + 16 * ldc + 0, ldc * sizeof(float));
        _tile_loadd(3, C + 16 * ldc + 16, ldc * sizeof(float));
    };
    auto zero_c = [&]() {
        _tile_zero(0);
        _tile_zero(1);
        _tile_zero(2);
        _tile_zero(3);
    };

    if constexpr (accum) {
        load_c();
    } else {
        zero_c();
    }

    auto compute = [&](int k) {
        _tile_stream_loadd(4, A + 0 * lda + k, lda * sizeof(bfloat16));
        _tile_loadd(6, B + k * ldb + 0, ldb * 2 * sizeof(bfloat16));
        _tile_dpbf16ps(0, 4, 6);
        _tile_loadd(7, B + k * ldb + 32, ldb * 2 * sizeof(bfloat16));
        _tile_dpbf16ps(1, 4, 7);
        _tile_stream_loadd(5, A + 16 * lda + k, lda * sizeof(bfloat16));
        _tile_dpbf16ps(2, 5, 6);
        _tile_dpbf16ps(3, 5, 7);
    };

    #pragma GCC unroll 4
    for (int k = 0; k < last_k_offset; k += 32) {
        compute(k);
    }

    auto store_c = [&]() {
    // store to C
        _tile_stored(0, C + 0 * ldc + 0, ldc * sizeof(float));
        _tile_stored(1, C + 0 * ldc + 16, ldc * sizeof(float));
        _tile_stored(2, C + 16 * ldc + 0, ldc * sizeof(float));
        _tile_stored(3, C + 16 * ldc + 16, ldc * sizeof(float));
    };

    // TODO(jgong5): move tail k computation to separate loopnest to save tile configuration overhead
    if C10_UNLIKELY (tail_k_size > 0) {
        if C10_LIKELY (last_k_offset > 0) {
            store_c();
            amx_state.configure(tilecfg_rows, tail_k_size * sizeof(bfloat16), 32 / 16, 2, loadconfig);
            load_c();
        }
        compute(last_k_offset);
    }

    store_c();
}

template <bool accum>
inline void cpp_bmm_micro_gemm_amx_kernel_16_2(
    AMXState& amx_state,
    const bfloat16* __restrict__ A,
    const bfloat16* __restrict__ B,
    float* __restrict__ C,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc,
    uint8_t tilecfg_rows
) {
    // TODO(jgong5): add prefetch hint for A, B, C
    auto loadconfig = [](const amx_tilecfg& cfg) {
        _tile_loadconfig(&cfg);
    };
    const auto last_k_offset = K / 32 * 32;
    const auto tail_k_size = K - last_k_offset;
    if C10_LIKELY (last_k_offset > 0) {
        amx_state.configure(tilecfg_rows, 64, 16 / 16, 2, loadconfig);
    } else {
        amx_state.configure(tilecfg_rows, tail_k_size * sizeof(bfloat16), 16 / 16, 2, loadconfig);
    }
    auto load_c = [&]() {
        _tile_loadd(0, C + 0 * ldc + 0, ldc * sizeof(float));
        _tile_loadd(1, C + 0 * ldc + 16, ldc * sizeof(float));
    };
    auto zero_c = [&]() {
        _tile_zero(0);
        _tile_zero(1);
    };

    if constexpr (accum) {
        load_c();
    } else {
        zero_c();
    }

    auto compute = [&](int k) {
        _tile_stream_loadd(2, A + 0 * lda + k, lda * sizeof(bfloat16));
        _tile_loadd(3, B + k * ldb + 0, ldb * 2 * sizeof(bfloat16));
        _tile_dpbf16ps(0, 2, 3);
        _tile_loadd(4, B + k * ldb + 32, ldb * 2 * sizeof(bfloat16));
        _tile_dpbf16ps(1, 2, 4);
    };

    #pragma GCC unroll 4
    for (int k = 0; k < last_k_offset; k += 32) {
        compute(k);
    }

    auto store_c = [&]() {
    // store to C
        _tile_stored(0, C + 0 * ldc + 0, ldc * sizeof(float));
        _tile_stored(1, C + 0 * ldc + 16, ldc * sizeof(float));
    };

    // TODO(jgong5): move tail k computation to separate loopnest to save tile configuration overhead
    if C10_UNLIKELY (tail_k_size > 0) {
        if C10_LIKELY (last_k_offset > 0) {
            store_c();
            amx_state.configure(tilecfg_rows, tail_k_size * sizeof(bfloat16), 16 / 16, 2, loadconfig);
            load_c();
        }
        compute(last_k_offset);
    }

    store_c();
}

template <bool accum>
inline void cpp_bmm_micro_gemm(
    AMXState& amx_state,
    const bfloat16* __restrict__ A,
    const bfloat16* __restrict__ B,
    float* __restrict__ C,
    int64_t M,
    int64_t N,
    int64_t K,
    int64_t lda,
    int64_t ldb,
    int64_t ldc
) {
    AOTI_TORCH_CHECK(N % 32 == 0, "N dimension must be multiple of 32");
    AOTI_TORCH_CHECK(K % 2 == 0, "K dimension must be multiple of 2");
    // TODO(jgong5): loop unroll for M and N
    for (int64_t n = 0; n < N; n += 32) {
        for (int64_t m = 0; m < M; m += 32) {
            int64_t block_m = std::min<int64_t>(M - m, 32);
            int64_t m_tail = m;
            if (block_m >= 32) {
                cpp_bmm_micro_gemm_amx_kernel_32_2<accum>(
                    amx_state,
                    A + m * lda,
                    B + n,
                    C + m * ldc + n,
                    K,
                    lda,
                    ldb,
                    ldc,
                    16
                );
                block_m -= 32;
                m_tail += 32;
            }
            else
            if (block_m >= 16) {
                cpp_bmm_micro_gemm_amx_kernel_16_2<accum>(
                    amx_state,
                    A + m * lda,
                    B + n,
                    C + m * ldc + n,
                    K,
                    lda,
                    ldb,
                    ldc,
                    16
                );
                block_m -= 16;
                m_tail += 16;
            }
            if (block_m > 0) {
                cpp_bmm_micro_gemm_amx_kernel_16_2<accum>(
                    amx_state,
                    A + m_tail * lda,
                    B + n,
                    C + m_tail * ldc + n,
                    K,
                    lda,
                    ldb,
                    ldc,
                    block_m
                );
            }
        }
    }
}
void threaded_mm(const bfloat16* X, const bfloat16* W, bfloat16* Y, const int64_t ks_b_index)
{

    constexpr int64_t num_threads = 48;
    constexpr int64_t N = 64;
    constexpr int64_t K = 96;
    constexpr int64_t Mr = 32;
    constexpr int64_t Nr = 32;
    constexpr int64_t Kr = 32;
    constexpr int64_t Nr_blocks = (N + Nr - 1) / Nr;
    constexpr int64_t Kr_blocks = (K + Kr - 1) / Kr;
    constexpr int64_t M = static_cast<int64_t>(384L);
    constexpr int64_t Mr_blocks = (M + Mr - 1) / Mr;
    constexpr int64_t Mt_blocks = 1;
    constexpr int64_t Nt_blocks = 1;
    constexpr int64_t Kt_blocks = 3;
    constexpr int64_t Mc_blocks = 1;
    constexpr int64_t Nc_blocks = 1;
    constexpr int64_t Kc_blocks = 3;
    constexpr int64_t num_Mc_blocks = (Mr_blocks + Mc_blocks - 1) / Mc_blocks;
    constexpr int64_t num_Nc_blocks = (Nr_blocks + Nc_blocks - 1) / Nc_blocks;
    constexpr int64_t num_Mt_blocks = (Mr_blocks + Mt_blocks - 1) / Mt_blocks;
    constexpr int64_t num_Nt_blocks = (Nr_blocks + Nt_blocks - 1) / Nt_blocks;
    constexpr int64_t num_Kt_blocks = (Kr_blocks + Kt_blocks - 1) / Kt_blocks;

    // make sure all partitions are assigned
    AOTI_TORCH_CHECK(
        Mt_blocks * Nt_blocks * Kt_blocks * 48 >= Mr_blocks * Nr_blocks * Kr_blocks,
        "Not all partitions are assigned."
    );
    #pragma omp parallel num_threads(48)
    {
        const int tid = omp_get_thread_num();
        const int64_t k_group_id = tid / num_Kt_blocks;
        const int64_t k_slice_id = tid % num_Kt_blocks;
        const int64_t n_group_id = k_group_id / num_Nt_blocks;
        const int64_t n_slice_id = k_group_id % num_Nt_blocks;
        const int64_t k_block_start = k_slice_id * Kt_blocks;
        const int64_t k_block_end = std::min(k_block_start + Kt_blocks, Kr_blocks);
        const int64_t n_block_start = n_slice_id * Nt_blocks;
        const int64_t n_block_end = std::min(n_block_start + Nt_blocks, Nr_blocks);
        const int64_t m_block_start = std::min(n_group_id * Mt_blocks, Mr_blocks);
        const int64_t m_block_end = std::min(m_block_start + Mt_blocks, Mr_blocks);
        const int64_t num_Mc_blocks_per_thread = (m_block_end - m_block_start + Mc_blocks - 1) / Mc_blocks;
        AMXState amx_state;
        auto _local_acc_buf = std::make_unique<float[]>(static_cast<int64_t>(Mc_blocks*Mr*Nc_blocks*Nr)); auto local_acc_buf = _local_acc_buf.get();
        for (int64_t mc_block_id = 0; mc_block_id < num_Mc_blocks_per_thread; mc_block_id++) {
            const int64_t my_mc_block_id = (mc_block_id + n_slice_id) % num_Mc_blocks_per_thread;
            const int64_t mc = m_block_start + my_mc_block_id * Mc_blocks;
            const int64_t m_start = mc * Mr;
            const int64_t m_end = std::min(std::min(mc + Mc_blocks, m_block_end) * Mr, M);
            const int64_t m_size = m_end - m_start;
            for (int64_t nc = n_block_start; nc < n_block_end; nc += Nc_blocks) {
                const int64_t n_start = nc * Nr;
                const int64_t n_end = std::min(std::min(nc + Nc_blocks, n_block_end) * Nr, N);
                const int64_t n_size = n_end - n_start;
                // NB: assume we pad N, nc_block_end won't exceed padded N here.
                const int64_t nc_block_end = std::min(nc + Nc_blocks, n_block_end);
                if (_local_acc_buf == nullptr) { _local_acc_buf = std::make_unique<float[]>(static_cast<int64_t>(Mc_blocks*Mr*Nc_blocks*Nr)); local_acc_buf = _local_acc_buf.get(); }
                for (int64_t kc = k_block_start; kc < k_block_end; kc += Kc_blocks) {
                    int64_t k_start = kc * Kr;
                    int64_t k_end = std::min(std::min(kc + Kc_blocks, k_block_end) * Kr, K);
                    for (int64_t nci = nc; nci < nc_block_end; nci++) {
                        if (kc == k_block_start) {
                            cpp_bmm_micro_gemm<static_cast<bool>(false)>(
                                amx_state,
                                &(X[static_cast<int64_t>(k_start + (96L*m_start) + (36864L*ks_b_index))]),
                                &(W[static_cast<int64_t>((32L*k_start) + (3072L*nci) + (6144L*ks_b_index))]),
                                &(local_acc_buf[static_cast<int64_t>((Nr*nci) + ((-1L)*Nr*nc))]),
                                static_cast<int64_t>(m_end + ((-1L)*m_start)),
                                static_cast<int64_t>(Nr),
                                static_cast<int64_t>(k_end + ((-1L)*k_start)),
                                static_cast<int64_t>(96L),
                                static_cast<int64_t>(32L),
                                static_cast<int64_t>(Nc_blocks*Nr)
                            );

                        } else {
                            cpp_bmm_micro_gemm<static_cast<bool>(true)>(
                                amx_state,
                                &(X[static_cast<int64_t>(k_start + (96L*m_start) + (36864L*ks_b_index))]),
                                &(W[static_cast<int64_t>((32L*k_start) + (3072L*nci) + (6144L*ks_b_index))]),
                                &(local_acc_buf[static_cast<int64_t>((Nr*nci) + ((-1L)*Nr*nc))]),
                                static_cast<int64_t>(m_end + ((-1L)*m_start)),
                                static_cast<int64_t>(Nr),
                                static_cast<int64_t>(k_end + ((-1L)*k_start)),
                                static_cast<int64_t>(96L),
                                static_cast<int64_t>(32L),
                                static_cast<int64_t>(Nc_blocks*Nr)
                            );

                        }
                    }
                }
                {
                    {
                        #pragma GCC ivdep
                        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(m_end + ((-1L)*m_start)); x0+=static_cast<int64_t>(1L))
                        {
                            for(int64_t x1=static_cast<int64_t>(0L); x1<static_cast<int64_t>(16L*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L)))); x1+=static_cast<int64_t>(16L))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(local_acc_buf + static_cast<int64_t>(x1 + (Nc_blocks*Nr*x0)), static_cast<int64_t>(16));
                                auto tmp1 = at::vec::convert<bfloat16>(tmp0);
                                tmp1.store(Y + static_cast<int64_t>(n_start + x1 + (64L*m_start) + (64L*x0) + (24576L*ks_b_index)), static_cast<int64_t>(16));
                            }
                            for(int64_t x1=static_cast<int64_t>(16L*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L)))); x1<static_cast<int64_t>(n_end + ((-1L)*n_start)); x1+=(static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L))))) == 0 ? 1 : static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L)))))))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(local_acc_buf + static_cast<int64_t>(x1 + (Nc_blocks*Nr*x0)), static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L))))));
                                auto tmp1 = at::vec::convert<bfloat16>(tmp0);
                                tmp1.store(Y + static_cast<int64_t>(n_start + x1 + (64L*m_start) + (64L*x0) + (24576L*ks_b_index)), static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L))))));
                            }
                        }
                    }

                }
            }
        }
        amx_state.release([]() { _tile_release(); });
    }
}
void single_thread_mm(const bfloat16* X, const bfloat16* W, bfloat16* Y, const int64_t ks_b_index)
{

    constexpr int64_t num_threads = 1;
    constexpr int64_t N = 64;
    constexpr int64_t K = 96;
    constexpr int64_t Mr = 32;
    constexpr int64_t Nr = 32;
    constexpr int64_t Kr = 32;
    constexpr int64_t Nr_blocks = (N + Nr - 1) / Nr;
    constexpr int64_t Kr_blocks = (K + Kr - 1) / Kr;
    constexpr int64_t M = static_cast<int64_t>(384L);
    constexpr int64_t Mr_blocks = (M + Mr - 1) / Mr;
    constexpr int64_t Mt_blocks = 12;
    constexpr int64_t Nt_blocks = 2;
    constexpr int64_t Kt_blocks = 3;
    constexpr int64_t Mc_blocks = 12;
    constexpr int64_t Nc_blocks = 1;
    constexpr int64_t Kc_blocks = 3;
    constexpr int64_t num_Mc_blocks = (Mr_blocks + Mc_blocks - 1) / Mc_blocks;
    constexpr int64_t num_Nc_blocks = (Nr_blocks + Nc_blocks - 1) / Nc_blocks;
    constexpr int64_t num_Mt_blocks = (Mr_blocks + Mt_blocks - 1) / Mt_blocks;
    constexpr int64_t num_Nt_blocks = (Nr_blocks + Nt_blocks - 1) / Nt_blocks;
    constexpr int64_t num_Kt_blocks = (Kr_blocks + Kt_blocks - 1) / Kt_blocks;

    // make sure all partitions are assigned
    AOTI_TORCH_CHECK(
        Mt_blocks * Nt_blocks * Kt_blocks * 1 >= Mr_blocks * Nr_blocks * Kr_blocks,
        "Not all partitions are assigned."
    );
    {
        constexpr int tid = 0;
        constexpr int64_t k_group_id = 0;
        constexpr int64_t k_slice_id = 0;
        constexpr int64_t n_group_id = 0;
        constexpr int64_t n_slice_id = 0;
        constexpr int64_t m_block_start = 0;
        constexpr int64_t n_block_start = 0;
        constexpr int64_t n_block_end = Nr_blocks;
        constexpr int64_t k_block_start = 0;
        constexpr int64_t k_block_end = Kr_blocks;
        constexpr int64_t num_Mc_blocks_per_thread = num_Mc_blocks;
        constexpr int64_t m_block_end = Mr_blocks;
        AMXState amx_state;
        auto _local_acc_buf = std::make_unique<float[]>(static_cast<int64_t>(Mc_blocks*Mr*Nc_blocks*Nr)); auto local_acc_buf = _local_acc_buf.get();
        for (int64_t mc_block_id = 0; mc_block_id < num_Mc_blocks_per_thread; mc_block_id++) {
            const int64_t my_mc_block_id = (mc_block_id + n_slice_id) % num_Mc_blocks_per_thread;
            const int64_t mc = m_block_start + my_mc_block_id * Mc_blocks;
            const int64_t m_start = mc * Mr;
            const int64_t m_end = std::min(std::min(mc + Mc_blocks, m_block_end) * Mr, M);
            const int64_t m_size = m_end - m_start;
            for (int64_t nc = n_block_start; nc < n_block_end; nc += Nc_blocks) {
                const int64_t n_start = nc * Nr;
                const int64_t n_end = std::min(std::min(nc + Nc_blocks, n_block_end) * Nr, N);
                const int64_t n_size = n_end - n_start;
                // NB: assume we pad N, nc_block_end won't exceed padded N here.
                const int64_t nc_block_end = std::min(nc + Nc_blocks, n_block_end);
                if (_local_acc_buf == nullptr) { _local_acc_buf = std::make_unique<float[]>(static_cast<int64_t>(Mc_blocks*Mr*Nc_blocks*Nr)); local_acc_buf = _local_acc_buf.get(); }
                for (int64_t kc = k_block_start; kc < k_block_end; kc += Kc_blocks) {
                    int64_t k_start = kc * Kr;
                    int64_t k_end = std::min(std::min(kc + Kc_blocks, k_block_end) * Kr, K);
                    for (int64_t nci = nc; nci < nc_block_end; nci++) {
                        if (kc == k_block_start) {
                            cpp_bmm_micro_gemm<static_cast<bool>(false)>(
                                amx_state,
                                &(X[static_cast<int64_t>(k_start + (96L*m_start) + (36864L*ks_b_index))]),
                                &(W[static_cast<int64_t>((32L*k_start) + (3072L*nci) + (6144L*ks_b_index))]),
                                &(local_acc_buf[static_cast<int64_t>((Nr*nci) + ((-1L)*Nr*nc))]),
                                static_cast<int64_t>(m_end + ((-1L)*m_start)),
                                static_cast<int64_t>(Nr),
                                static_cast<int64_t>(k_end + ((-1L)*k_start)),
                                static_cast<int64_t>(96L),
                                static_cast<int64_t>(32L),
                                static_cast<int64_t>(Nc_blocks*Nr)
                            );

                        } else {
                            cpp_bmm_micro_gemm<static_cast<bool>(true)>(
                                amx_state,
                                &(X[static_cast<int64_t>(k_start + (96L*m_start) + (36864L*ks_b_index))]),
                                &(W[static_cast<int64_t>((32L*k_start) + (3072L*nci) + (6144L*ks_b_index))]),
                                &(local_acc_buf[static_cast<int64_t>((Nr*nci) + ((-1L)*Nr*nc))]),
                                static_cast<int64_t>(m_end + ((-1L)*m_start)),
                                static_cast<int64_t>(Nr),
                                static_cast<int64_t>(k_end + ((-1L)*k_start)),
                                static_cast<int64_t>(96L),
                                static_cast<int64_t>(32L),
                                static_cast<int64_t>(Nc_blocks*Nr)
                            );

                        }
                    }
                }
                {
                    {
                        #pragma GCC ivdep
                        for(int64_t x0=static_cast<int64_t>(0L); x0<static_cast<int64_t>(m_end + ((-1L)*m_start)); x0+=static_cast<int64_t>(1L))
                        {
                            for(int64_t x1=static_cast<int64_t>(0L); x1<static_cast<int64_t>(16L*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L)))); x1+=static_cast<int64_t>(16L))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(local_acc_buf + static_cast<int64_t>(x1 + (Nc_blocks*Nr*x0)), static_cast<int64_t>(16));
                                auto tmp1 = at::vec::convert<bfloat16>(tmp0);
                                tmp1.store(Y + static_cast<int64_t>(n_start + x1 + (64L*m_start) + (64L*x0) + (24576L*ks_b_index)), static_cast<int64_t>(16));
                            }
                            for(int64_t x1=static_cast<int64_t>(16L*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L)))); x1<static_cast<int64_t>(n_end + ((-1L)*n_start)); x1+=(static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L))))) == 0 ? 1 : static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L)))))))
                            {
                                auto tmp0 = at::vec::Vectorized<float>::loadu(local_acc_buf + static_cast<int64_t>(x1 + (Nc_blocks*Nr*x0)), static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L))))));
                                auto tmp1 = at::vec::convert<bfloat16>(tmp0);
                                tmp1.store(Y + static_cast<int64_t>(n_start + x1 + (64L*m_start) + (64L*x0) + (24576L*ks_b_index)), static_cast<int64_t>(n_end + ((-1L)*n_start) + ((-16L)*(c10::div_floor_integer(static_cast<int64_t>((n_end + ((-1L)*n_start))), static_cast<int64_t>(16L))))));
                            }
                        }
                    }

                }
            }
        }
        amx_state.release([]() { _tile_release(); });
    }
}
extern "C"
void cpp_bmm(const bfloat16* X, const bfloat16* W, bfloat16* Y)
{
    const int64_t B = static_cast<int64_t>(5L);
    constexpr int64_t num_threads = 48;
    int64_t B_single_thread_block = (B / num_threads) * num_threads;

    #pragma omp parallel for num_threads(48)
    for (int64_t b_start = 0; b_start < B_single_thread_block; ++b_start) {
        single_thread_mm(X, W, Y, b_start);
    }
    for (int64_t b_start = B_single_thread_block; b_start < B; ++b_start) {
        threaded_mm(X, W, Y, b_start);
    }
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129772
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-12-06 04:54:00 +00:00
d67b4f9e5f type _inductor/quantized_lowerings.py (#137598)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137598
Approved by: https://github.com/Skylion007
2024-10-09 23:29:26 +00:00
f951fcd1d7 Inductor-CPU WoQ int8 GEMM micro-kernel with scale epilogue (#131887)
## Summary

As part of #125683, this PR modifies existing CPU GEMM cpp template & micro-kernel template to enable int8 WoQ GEMM auto-tuning with AVX2, AVX512 & AMX ISAs (the latter is only available on Xeon 4th generation & beyond).

WoQ GEMM takes FP16/BF16 activations, int8 weights, and scale of the same dtype as activations.
The operation is equivalent to `torch.nn.functional.linear(x, w.to(x.dtype)) * scale`, which is essentially what the ATen op `torch.ops.aten._weight_int8pack_mm` currently does (except that weights are not cached by it). Weights will be considered constant & cached, so this implementation is suitable for inference, and not QAT. `scale` is supported as a `mul` epilogue.

Only BF16 activations have been supported in this PR because for FP16 & FP32, weight is dequantized during constant-folding pass of freezing, and then after auto-tuning, performance with a large `M` dimension may be better than either torch.ops.aten._weight_int8pack_mm, or the WoQ micro-kernel support introduced in this PR, which dequantizes `w` within the micro-kernel.
While even BF16 activations with a large `M` dimension may benefit from dequantizing `w` beforehand, for now, they would  use WoQ support in GEMM templates for auto-tuning, and then a subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

### Performance
#### AMX
Op-level speedup due to AMX micro-kernel (selected during auto-tuning) on 32 physical cores of Intel(R) Xeon(R) Platinum 8468H (of Xeon 4th generation series, codenamed Sapphire Rapids) vs. ATen kernel `torch.ops.aten._weight_int8pack_mm`. Intel OpenMP & tcmalloc were preloaded.

In a few cases with an odd `K`, the implementation being added in this PR may not perform as well as the ATen kernel, which is unrelated to this PR, though, since `test_linear_amx` also exhibits similar datapoints. In those cases, the AMX micro-kernel might be slower than AVX512 micro-kernel, so if such sets of shapes are used for auto-tuning, either the AVX512 micro-kernel implementation, or the ATen kernel would be chosen instead.

Benchmarked with unit-tests.

Tabular data at https://gist.github.com/sanchitintel/294811a86c8ff6b867c668ae2107c405?permalink_comment_id=5142442#gistcomment-5142442

The AVX512 micro-kernel was disabled to collect data for AMX micro-kernel.

#### AVX2/AVX512 micro-kernels

Tabular data at at https://gist.github.com/sanchitintel/52b5fa9c66f791be19e48e2aa6423dc4?permalink_comment_id=5142437#gistcomment-5142437

### Follow-up
1. int4 WoQ GEMM micro-kernel will also be added in a separate PR.
2. A subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

E2E perf measurement should be done with #131310.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131887
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-08-14 03:14:45 +00:00
89670d5bdd Revert "Inductor-CPU WoQ int8 GEMM micro-kernel with scale epilogue (#131887)"
This reverts commit 8fbd7d92a81b61d41363edb1b3902ba7701d5a27.

Reverted https://github.com/pytorch/pytorch/pull/131887 on behalf of https://github.com/fbgheith due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/131887#issuecomment-2285082401))
2024-08-12 23:45:46 +00:00
8fbd7d92a8 Inductor-CPU WoQ int8 GEMM micro-kernel with scale epilogue (#131887)
## Summary

As part of #125683, this PR modifies existing CPU GEMM cpp template & micro-kernel template to enable int8 WoQ GEMM auto-tuning with AVX2, AVX512 & AMX ISAs (the latter is only available on Xeon 4th generation & beyond).

WoQ GEMM takes FP16/BF16 activations, int8 weights, and scale of the same dtype as activations.
The operation is equivalent to `torch.nn.functional.linear(x, w.to(x.dtype)) * scale`, which is essentially what the ATen op `torch.ops.aten._weight_int8pack_mm` currently does (except that weights are not cached by it). Weights will be considered constant & cached, so this implementation is suitable for inference, and not QAT. `scale` is supported as a `mul` epilogue.

Only BF16 activations have been supported in this PR because for FP16 & FP32, weight is dequantized during constant-folding pass of freezing, and then after auto-tuning, performance with a large `M` dimension may be better than either torch.ops.aten._weight_int8pack_mm, or the WoQ micro-kernel support introduced in this PR, which dequantizes `w` within the micro-kernel.
While even BF16 activations with a large `M` dimension may benefit from dequantizing `w` beforehand, for now, they would  use WoQ support in GEMM templates for auto-tuning, and then a subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

### Performance
#### AMX
Op-level speedup due to AMX micro-kernel (selected during auto-tuning) on 32 physical cores of Intel(R) Xeon(R) Platinum 8468H (of Xeon 4th generation series, codenamed Sapphire Rapids) vs. ATen kernel `torch.ops.aten._weight_int8pack_mm`. Intel OpenMP & tcmalloc were preloaded.

In a few cases with an odd `K`, the implementation being added in this PR may not perform as well as the ATen kernel, which is unrelated to this PR, though, since `test_linear_amx` also exhibits similar datapoints. In those cases, the AMX micro-kernel might be slower than AVX512 micro-kernel, so if such sets of shapes are used for auto-tuning, either the AVX512 micro-kernel implementation, or the ATen kernel would be chosen instead.

Benchmarked with unit-tests.

Tabular data at https://gist.github.com/sanchitintel/294811a86c8ff6b867c668ae2107c405?permalink_comment_id=5142442#gistcomment-5142442

The AVX512 micro-kernel was disabled to collect data for AMX micro-kernel.

#### AVX2/AVX512 micro-kernels

Tabular data at at https://gist.github.com/sanchitintel/52b5fa9c66f791be19e48e2aa6423dc4?permalink_comment_id=5142437#gistcomment-5142437

### Follow-up
1. int4 WoQ GEMM micro-kernel will also be added in a separate PR.
2. A subsequent PR would add logic for deciding whether or not to dequantize weights beforehand.

E2E perf measurement should be done with #131310.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131887
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
2024-08-10 02:01:04 +00:00
b6d477fd56 [BE][Easy][16/19] enforce style for empty lines in import segments in torch/_i*/ (#129768)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129768
Approved by: https://github.com/jansel
2024-07-20 16:20:58 +00:00
ea614fb2b1 Flip default value for mypy disallow_untyped_defs [2/11] (#127839)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127839
Approved by: https://github.com/oulgen
2024-06-08 18:23:08 +00:00
4b725e1619 [AOTInductor] Support quantized linear on CPU with fbgemm (#123069)
Summary:
Added support for quantized linear on CPU with fbgemm.
Specifically, for torch.ops.quantized.linear_unpacked_dynamic_fp16, we
decompose it into two steps, pack weight, and fbgemm's qlinear with
packed weight.

Test Plan:
Included in commit.
test_aot_inductor::test_quantized_linear

Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D55577959](https://our.internmc.facebook.com/intern/diff/D55577959)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123069
Approved by: https://github.com/hl475
2024-04-01 09:15:05 +00:00
19d6004b97 add int8 woq mm pattern matcher (#120985)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120985
Approved by: https://github.com/mingfeima, https://github.com/jgong5, https://github.com/eellison
2024-03-20 00:23:41 +00:00
9319dd1c7c [Quant][Inductor] Enable the lowering of quantized maxpool2d (#105906)
**Summary**
Enable the `dq-maxpool2d-q` pattern match and lower into `torch.ops.quantized.max_pool2d`.

**Test Plan**
```
python -m pytest test_mkldnn_pattern_matcher.py -k test_qmaxpool2d
python -m pytest test_quantized_op.py -k test_max_pool2d_pt2e
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/105906
Approved by: https://github.com/jgong5, https://github.com/eellison
ghstack dependencies: #104580, #104581, #104588, #104590, #105455, #105456, #105639
2023-08-26 08:36:47 +00:00