Reference: https://docs.astral.sh/ruff/formatter/black/#assert-statements
> Unlike Black, Ruff prefers breaking the message over breaking the assertion, similar to how both Ruff and Black prefer breaking the assignment value over breaking the assignment target:
>
> ```python
> # Input
> assert (
> len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
>
> # Black
> assert (
> len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
> # Ruff
> assert len(policy_types) >= priority + num_duplicates, (
> f"This tests needs at least {priority + num_duplicates} many types."
> )
> ```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144546
Approved by: https://github.com/malfet
This is one of a series of PRs to update us to PEP585 (changing Dict -> dict, List -> list, etc). Most of the PRs were completely automated with RUFF as follows:
Since RUFF UP006 is considered an "unsafe" fix first we need to enable unsafe fixes:
```
--- a/tools/linter/adapters/ruff_linter.py
+++ b/tools/linter/adapters/ruff_linter.py
@@ -313,6 +313,7 @@
"ruff",
"check",
"--fix-only",
+ "--unsafe-fixes",
"--exit-zero",
*([f"--config={config}"] if config else []),
"--stdin-filename",
```
Then we need to tell RUFF to allow UP006 (as a final PR once all of these have landed this will be made permanent):
```
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -40,7 +40,7 @@
[tool.ruff]
-target-version = "py38"
+target-version = "py39"
line-length = 88
src = ["caffe2", "torch", "torchgen", "functorch", "test"]
@@ -87,7 +87,6 @@
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
- "UP006", # keep-runtime-typing
"UP007", # keep-runtime-typing
]
select = [
```
Finally running `lintrunner -a --take RUFF` will fix up the deprecated uses.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145101
Approved by: https://github.com/bobrenjc93
Fix: #141974
This PR makes `ViewMeta` sequence, present in functional tensors,
serializable with pickle. In order to accomplish that, it makes
`ViewMeta` an abstract class with overridable `forward` and `reverse`
functions. In this context, each operation that once instanciated
`ViewMeta`, should now create a new specialized class that inherits from
`ViewMeta. Therefore, this PR also uses codegen for creating these
specializations.
In summary, these are the changes this PR introduces:
- `ViewMeta` is turned into an abstract class (see
_FunctionalStorageImpl.cpp_). `forward` and `reverse` are pure virtual
functions that need to be implemented. `to_out_index` should be
implemented by operations that might return more than 1 output.
- New `ViewMeta` specializations for `resize_` and `_unsafe_view` are
created (see _FunctionalizeFallbackKernel.h_).
- New templates _ViewMetaClasses.{cpp,h}_ are created. They hold the
declaration and definition of the `ViewMeta` specializations, which
are automatically generated in the ATen codegen (see _gen.py_).
- New `_functionalization` Python sub-module is created (see
_Module.cpp_). It serves as namespace for the `ViewMeta`
specializations and `InverseReturnMode` enum.
- New template _ViewMetaClassesPythonBinding.cpp_ is created. It holds
the automatically generated Python bindings for the `ViewMeta`
specialization, which are generated in the torch codegen (see
_generate_code.py_).
Note that this PR makes use of codegen at 2 different moments:
- ATen codegen (_gen.py_): generates the `ViewMeta` specialized classes.
- Torch codegen (_generate_code.py_): generated the Python bindings for
them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143712
Approved by: https://github.com/bdhirsh
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
[AOTI] Introduce an extensibility mechanism for the c shim codegen to make it easy to produce c shims for out-of-tree OP kernels as well. Add c shim for XPU.
### Motivation
Since the current c shim codegen will only produce C wrappers for Op's registered in `aten/src/ATen/native/native_functions.yaml`, for the same backend, when a portion of out-of-tree OP's are not registered in that file, but are registered externally. For example, `third_party/torch-xpu-ops/yaml/native_functions.yaml` , in this case, the existing codegen can't fulfill the need to do extensions for the c shims from the out-of-tree OPs for the in-tree that has already been produced.
### Design
To extend the c shim with more OP for a backend from out-of-tree.
The PR provided a bool option `--aoti-extend` to indicate the codegen is to extend c shim from out-of-tree.
The generated c shim is stored in the `extend` subdirectory , for example:
```
torch/include/torch/csrc/inductor/aoti_torch/generated/c_shim_xpu.h
torch/include/torch/csrc/inductor/aoti_torch/generated/c_shim_xpu.cpp
torch/include/torch/csrc/inductor/aoti_torch/generated/extend/c_shim_xpu.h
torch/include/torch/csrc/inductor/aoti_torch/generated/extend/c_shim_xpu.cpp
```
example usage:
`python -m torchgen.gen --source-path third_party/torch-xpu-ops/yaml/ --xpu --aoti-extend --update-aoti-c-shim `
`--xpu`: generate c shim for XPU
`--aoti-extend `: this is an out-of-tree OPs(defined in `third_party/torch-xpu-ops/yaml/native_functions.yaml`) extend for in-tree ops(defined in `aten/src/ATen/native/native_functions.yaml`)
`--update-aoti-c-shim`: always generate c_shim_xpu.h for the extend c_shim.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136742
Approved by: https://github.com/EikanWang, https://github.com/desertfire
ghstack dependencies: #139025
[Intel GPU] Support RegisterXPU.cpp codegen and compile for the in-tree XPU structured GEMM ops.
Motivation: There are two parts of aten ops for XPU, one is in-tree ops like GEMM related OPs and the other is out-off-tree ops in torch-xpu-ops. For the in-tree part,since Pytorch uses native_functions.yaml registration and is equipped with convenient codegen capabilities, we want to take advantage of these benefits as well.
At the same time, since AOT Inductor also uses native_functions.yaml to generate c shim wrappers, we also need to enable this mechanism for XPU.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139025
Approved by: https://github.com/EikanWang, https://github.com/jansel, https://github.com/desertfire
This PR is a supplement to #130082. The previous PR #130082 fulfill the basic functionality of codegen, while we found it fails to handle the device sameness check in lots of uts. Current PR is aimed to facilitate the XPU device guard code generation.
With current PR, the code snippet in `RegisterXPU.cpp` is as follows, where we can see the device guard is successfully generated.
```c++
namespace {
at::Tensor & wrapper_XPU_Tensor_float_out_normal_out(const at::Tensor & mean, double std, ::std::optional<at::Generator> generator, at::Tensor & out) {
std::optional<Device> common_device = std::nullopt;
(void)common_device; // Suppress unused variable warning
c10::impl::check_and_update_common_device(common_device, out, "wrapper_XPU_Tensor_float_out_normal_out", "out");
c10::impl::check_and_update_common_device(common_device, mean, "wrapper_XPU_Tensor_float_out_normal_out", "mean");
const OptionalDeviceGuard device_guard(device_of(out));
return at::native::normal_out(mean, std, generator, out);
}
} // anonymous namespace
```
Nevertheless, without current change, the generated code is
```c++
namespace {
at::Tensor & wrapper_XPU_Tensor_float_out_normal_out(const at::Tensor & mean, double std, ::std::optional<at::Generator> generator, at::Tensor & out) {
// No device check
// DeviceGuard omitted
return at::native::normal_out(mean, std, generator, out);
}
} // anonymous namespace
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133980
Approved by: https://github.com/EikanWang, https://github.com/malfet
In gen.py, the code for generating CompositeViewCopyKernels.cpp includes *_native.h headers for "view_groups" but not "structured_native_functions". However, this results in the TORCH_API in the headers being ineffective and presents such functions being used outside libtorch_cpu.so
This patch ensures that gen.py includes the native headers for "structured_native_functions" in the same way as for "view_groups".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131208
Approved by: https://github.com/bdhirsh
Summary: When looking up for what backend call to use for a fallback op (see get_backend_index_for_aoti), sometimes we need to search for a NativeFunction's structured delegate. Previous str:NativeFunctionsGroup dict missed some cases, such as aten.index.Tensor, and that's why aten.index.Tensor was specified in the fallback_ops list but no C shim entry was generated for it. This PR uses a more robust OperatorName:NativeFunctionsGroup mapping.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125962
Approved by: https://github.com/chenyang78
This is a subset of changes extracted from https://github.com/pytorch/pytorch/pull/124683/
This PR contains modifications to make Inductor work with unbacked symbol inputs, which can occur when a data-dependent sized tensor is saved for backwards. The problems to be fixed:
* When binding initial symbols, we unconditionally bind unbacked symbols (instead of computing if they are needed, which only looks at backed symbols)
* Benchmark generation code doesn't work with unbacked symints as we have no hints to actually feed in real values. So I pick a random number and you are expected to fix it if it doesn't work
* Need to make sure we don't install dependencies on unbacked SymInt inputs, that puts us down the "promptly deallocate the input" path, but that's pointless for unbacked SymInt
Fixes https://github.com/pytorch/pytorch/issues/124652
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124739
Approved by: https://github.com/jansel
ghstack dependencies: #124310, #124314, #124316, #124394
Summary: The current C shim layer manually implements a C interface for a handful of ops. Obviously that's not scalable if we want to extend it to cover all aten ops. This new torchgen script automatically generates C shim interfaces for CPU and CUDA backends. The interface follows the same parameter passing rules as the current C shim layer, such as
* Use plain C data types to pass parameters
* Use AtenTensorHandle to pass at::Tensor
* Use pointer type to pass optional parameter
* Use pointer+length to pass list
* Use device_type+device_index to pass device
* When a parameter is a pointer of pointer, e.g. AtenTensorHandle**, the script generates either a list of optional values or an optional list of values
https://gist.github.com/desertfire/83701532b126c6d34dae6ba68a1b074a is an example of the generated torch/csrc/inductor/aoti_torch/generated/c_shim_cuda.cpp file. The current version doesn't generate C shim wrappers for all aten ops, and probably generates more wrappers than needed on the other hand, but it should serve as a good basis.
This PR by itself won't change AOTI codegen and thus won't introduce any FC breakage. The actual wrapper codegen changes will come in another PR with some version control flag to avoid FC breakage.
Differential Revision: [D54258087](https://our.internmc.facebook.com/intern/diff/D54258087)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120513
Approved by: https://github.com/jansel
Summary: To be used in https://github.com/pytorch/pytorch/pull/113873. Since set_ is effectively an inplace view op, we'll need to skip caching them.
Test Plan: Built pytorch; specifically this step: `/home/slarsen/local/miniconda3/envs/pytorch-3.10/bin/python -m torchgen.gen --source-path /home/slarsen/local/pytorch/cmake/../aten/src/ATen --install_dir /home/slarsen/local/pytorch/build/aten/src/ATen --per-operator-headers --generate sources --output-dependencies /home/slarsen/local/pytorch/build/aten/src/ATen/generated_sources.cmake`
Differential Revision: [D52814561](https://our.internmc.facebook.com/intern/diff/D52814561)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115769
Approved by: https://github.com/bdhirsh