Summary:
X-link: https://github.com/pytorch/executorch/pull/5720
For smaller models the overhead of profiling ops might be prohibitively large (distorting the inference execution time significantly) so we provide users an option to disable op profiling and essentially only profile the important events such as inference execution time.
To disable operator profiling users need to do:
```
etdump_gen.set_event_tracer_profiling_level(executorch::runtime::EventTracerProfilingLevel::kNoOperatorProfiling);
```
Test Plan: Added test case.
Differential Revision: D61883224
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136838
Approved by: https://github.com/dbort
This PR is a supplement to #130082. The previous PR #130082 fulfill the basic functionality of codegen, while we found it fails to handle the device sameness check in lots of uts. Current PR is aimed to facilitate the XPU device guard code generation.
With current PR, the code snippet in `RegisterXPU.cpp` is as follows, where we can see the device guard is successfully generated.
```c++
namespace {
at::Tensor & wrapper_XPU_Tensor_float_out_normal_out(const at::Tensor & mean, double std, ::std::optional<at::Generator> generator, at::Tensor & out) {
std::optional<Device> common_device = std::nullopt;
(void)common_device; // Suppress unused variable warning
c10::impl::check_and_update_common_device(common_device, out, "wrapper_XPU_Tensor_float_out_normal_out", "out");
c10::impl::check_and_update_common_device(common_device, mean, "wrapper_XPU_Tensor_float_out_normal_out", "mean");
const OptionalDeviceGuard device_guard(device_of(out));
return at::native::normal_out(mean, std, generator, out);
}
} // anonymous namespace
```
Nevertheless, without current change, the generated code is
```c++
namespace {
at::Tensor & wrapper_XPU_Tensor_float_out_normal_out(const at::Tensor & mean, double std, ::std::optional<at::Generator> generator, at::Tensor & out) {
// No device check
// DeviceGuard omitted
return at::native::normal_out(mean, std, generator, out);
}
} // anonymous namespace
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133980
Approved by: https://github.com/EikanWang, https://github.com/malfet
Add a way of generating a FunctionSchema from example values because hop's schema varies even for the same hop.
We didn't use torch._C.FunctionSchema because we cannot construct the classes directly (e.g. "__init__" cannot be used for torch._C.FunctionSchema). Also extending the Basic types in c++ seems not that easy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133521
Approved by: https://github.com/zou3519
This PR adds support in train_decision if one wants to learn a heuristic for ranking. The main idea is that the user has to provide a number of choices the heuristic should return. I added a way to prune the learned decision tree such that it always returns the number of choices provided by the user.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131705
Approved by: https://github.com/eellison
This PR introduces scripts that make it easier to use autoheuristic:
- `collect_data.sh`: The user can specify things like the number of GPUs to be used and the number of training samples to collect. This script will open one tmux pane per GPU and collect num_training_samples/num_gpus samples per GPU.
- `merge_data.py`: This script can be used to merge multiple training data files into a single file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133409
Approved by: https://github.com/Chillee
This PR introduces changes to AutoHeuristic that allow one to learn a heuristic as a decision tree. I used this to learn a heuristic for mixed_mm on A100 that consistenly performs better than the default choice (https://github.com/pytorch/pytorch/blob/main/torch/_inductor/kernel/mm.py#L402).
This is how the results look like:
Explanation of columns:
**wrong_max_spdup**: In the worst case, how much better would the best choice have been
**wrong_gman_spdup**: For inputs where the heuristic is wrong, how much better is the best choice on average (geomean)
**max_spdup_default**: Highest speedup achieved by the learned heuristic over the default choice
**gman_spdup_default**: Geomean speedup achived by the learned heuristic over the default choice
**max_slowdown_default**: If the default choice is better than the choice predicted by the learned heuristic, how much is it better in the worst case
**non_default_preds**: Number of times the learned heuristic predicted a choice that is not the default choice
**default_better**: Number of times the default choice is better than the choice made by the heuristic
```
set crit max_depth min_samples_leaf correct wrong unsure total wrong_max_spdup wrong_gman_spdup max_spdup_default gman_spdup_default max_slowdown_default non_default_preds default_better
train entropy 5 0.01 2376 740 323 3439 1.855386 1.063236 11.352318 3.438279 1.022164 3116 2
test entropy 5 0.01 563 183 71 817 1.622222 1.060897 10.084181 3.507741 1.017039 746 2
```
While the number of wrong predictions is high, on average the best choice is only around 6% better. What is important is that the choice predicted by the learned heuristic performs better than the default choice.
I evaluated my heuristic on gpt-fast `meta-llama/Llama-2-7b-chat-hf` with int8 weight quantization. To get the `tuned_mixed_mm` to trigger, I had to replace `F.linear()` in https://github.com/pytorch-labs/gpt-fast/blob/main/quantize.py#L355 with `torch.matmul(input, self.weight.t().to(dtype=input.dtype))` because the mixed_mm pattern does not match if there is a transpose between a cast and the matmul.
|batch size|prompt length| fallback | heuristic | speedup |
|----------|-------------|------------:|------------:|--------:|
| 1 | 7 | 75.31 tok/s | 148.83 tok/s| 1.97 |
| 1 | 11 | 75.99 tok/s | 148.15 tok/s| 1.94 |
| 4 | 7 | 103.48 tok/s | 472.00 tok/s| 4.56 |
| 4 | 11 | 103.56 tok/s | 371.36 tok/s| 3.58 |
| 8 | 7 | 201.92 tok/s | 813.44 tok/s| 4.02 |
| 8 | 11 | 201.76 tok/s | 699.36 tok/s| 3.46 |
Currently, the heuristic only applies to the following inputs:
- m <= 128, k >= 1024, n >= 1024 (For these sizes, one of the triton kernels wins in most cases, but the heuristic still has to be careful to not choose a config that performs worse than the fallback)
- k % 256 == 0 (If k is not a multiple of the block size, some choices perform extremely bad. In one case one config, that usually performs very well, was 130x slower.)
- mat1 not transposed
- mat2 transposed (In some cases, it was hard for the learned heuristic to detect some cases where it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131613
Approved by: https://github.com/eellison
This PR introduces changes to AutoHeuristic that allow one to learn a heuristic as a decision tree. I used this to learn a heuristic for mixed_mm on A100 that consistenly performs better than the default choice (https://github.com/pytorch/pytorch/blob/main/torch/_inductor/kernel/mm.py#L402).
This is how the results look like:
Explanation of columns:
**wrong_max_spdup**: In the worst case, how much better would the best choice have been
**wrong_gman_spdup**: For inputs where the heuristic is wrong, how much better is the best choice on average (geomean)
**max_spdup_default**: Highest speedup achieved by the learned heuristic over the default choice
**gman_spdup_default**: Geomean speedup achived by the learned heuristic over the default choice
**max_slowdown_default**: If the default choice is better than the choice predicted by the learned heuristic, how much is it better in the worst case
**non_default_preds**: Number of times the learned heuristic predicted a choice that is not the default choice
**default_better**: Number of times the default choice is better than the choice made by the heuristic
```
set crit max_depth min_samples_leaf correct wrong unsure total wrong_max_spdup wrong_gman_spdup max_spdup_default gman_spdup_default max_slowdown_default non_default_preds default_better
train entropy 5 0.01 2376 740 323 3439 1.855386 1.063236 11.352318 3.438279 1.022164 3116 2
test entropy 5 0.01 563 183 71 817 1.622222 1.060897 10.084181 3.507741 1.017039 746 2
```
While the number of wrong predictions is high, on average the best choice is only around 6% better. What is important is that the choice predicted by the learned heuristic performs better than the default choice.
I evaluated my heuristic on gpt-fast `meta-llama/Llama-2-7b-chat-hf` with int8 weight quantization. To get the `tuned_mixed_mm` to trigger, I had to replace `F.linear()` in https://github.com/pytorch-labs/gpt-fast/blob/main/quantize.py#L355 with `torch.matmul(input, self.weight.t().to(dtype=input.dtype))` because the mixed_mm pattern does not match if there is a transpose between a cast and the matmul.
|batch size|prompt length| fallback | heuristic | speedup |
|----------|-------------|------------:|------------:|--------:|
| 1 | 7 | 75.31 tok/s | 148.83 tok/s| 1.97 |
| 1 | 11 | 75.99 tok/s | 148.15 tok/s| 1.94 |
| 4 | 7 | 103.48 tok/s | 472.00 tok/s| 4.56 |
| 4 | 11 | 103.56 tok/s | 371.36 tok/s| 3.58 |
| 8 | 7 | 201.92 tok/s | 813.44 tok/s| 4.02 |
| 8 | 11 | 201.76 tok/s | 699.36 tok/s| 3.46 |
Currently, the heuristic only applies to the following inputs:
- m <= 128, k >= 1024, n >= 1024 (For these sizes, one of the triton kernels wins in most cases, but the heuristic still has to be careful to not choose a config that performs worse than the fallback)
- k % 256 == 0 (If k is not a multiple of the block size, some choices perform extremely bad. In one case one config, that usually performs very well, was 130x slower.)
- mat1 not transposed
- mat2 transposed (In some cases, it was hard for the learned heuristic to detect some cases where it
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131613
Approved by: https://github.com/eellison
ghstack dependencies: #131610, #131611
This PR introduces a script that can be used to collect data for mixed_mm to learn a heuristic with AutoHeuristic. This PR also includes the following things:
Move pad_mm related AutoHeuristic files into subdirectory
Introduce an interface benchmark_runner.py that can be subclassed to introduce new scripts to run benchmarks in order to collect data with AutoHeuristic (see gen_data_pad_mm.py and gen_data_mixed_mm.py).
The idea behind the interface is that, in the end, it hopefully makes it easier to collect data for new optimizations, and thus makes it easier to learn a heuristic.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131611
Approved by: https://github.com/eellison
ghstack dependencies: #131610
# Motivation
This PR intends to enhance the codegen to allow generate codes for XPU backend.
XPU operators need be registered in an hand-written way currently. Developers have no chance to take the advantage of shared code to handle tensor meta setting (like strides, proxy output, structured kernels). Manually porting code is erro-prone and may lead to high maintaining efforts.
We utilize the backend_whitelist argument in `gen.py` to generate XPU needed headers and source codes.
# Usage
XPU ops lie in `third_pary/torch-xpu-ops`, the codegen process is triggered before the complation of `torch-xpu-ops`
We use the following commands to generate XPU operators
` python -m torchgen.gen --source-path path/to/yaml/of/xpu --install-dir build/xpu --per-operator-headers --static-dispatch-backend --backend-whitelist=XPU`
The diff lies at `backend-whitelist=XPU`. The backend-whitelist key is an existent argument in torchgen.
The input of `gen.py` are code templates and operators yaml. We share the same templates in `aten`. A simplified yaml lies in `third_party/torch-xpu-ops`, which only includes the supported xpu operators. This yaml is a copy-and-modify of `native_functions.yaml`. No extra entry is added, the format is same as the one in `aten`
# Result
All operators headers are generated in `build/xpu/ATen/ops` independently, which would not affect operators declared/defined by CPU/CUDA or any other backend. XPU operators only include headers in this folder.
# Verification
* In `third-party/torch-xpu-ops`, we migrate all supported kernels to structured kernels style, where they are registered through `REGISTER_XPU_DISPATCH` or `TORCH_IMPL_FUNC`, and we have UT verification based on `test_ops.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130082
Approved by: https://github.com/EikanWang, https://github.com/gujinghui, https://github.com/atalman
ghstack dependencies: #130019
In gen.py, the code for generating CompositeViewCopyKernels.cpp includes *_native.h headers for "view_groups" but not "structured_native_functions". However, this results in the TORCH_API in the headers being ineffective and presents such functions being used outside libtorch_cpu.so
This patch ensures that gen.py includes the native headers for "structured_native_functions" in the same way as for "view_groups".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131208
Approved by: https://github.com/bdhirsh
While for optimizations like pad_mm, there are always only two possible choices, for other decision procedures, like kernel choice selection, the set of "available" choices depends on the input. Instead of storing the choices as metadata, we can instead take a look at all choices for which we have collected data (i.e. `df[CHOICE_COL].unique()`).
In this PR, I also try to replace "choice" and "feedback" with global constants CHOICE_COL and FEEDBACK_COL.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130304
Approved by: https://github.com/eellison
Previously, it was only possible to collect data or use a heuristic regardless of where autoheuristic is used. This PR makes it possible to collect data for some optimizations while using a learned heuristic for other optimizations.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130245
Approved by: https://github.com/shunting314
This PR introduces AutoHeuristic, a framework to collect results from autotuning, learn a heuristic as a machine learning model (a regression tree), and then ship the learned heuristic by generating the regression tree to code.
The heuristics have been learned on artificial/random data that has been collected with the `gen_data_pad_mm.py` script. The `gen_pad_mm_a100.sh` scripts can then be used to learn a heuristic and generate it to code.
The best model is decided by doing a grid search over various values for `max_depth` and `min_samples_leaf` and choosing the model with the highest number of correct predicitons on the validation set.
The heuristic can return "unsure" which means that it is not sure which choice is the best choice and as a result autotuning will happen.
On A100 only tensors where each dimension is >= 512 are considered. For smaller tensors the heuristics that I learned returned "unsure" too often.
The results for randomly generated data and huggingface look as follows:
`max_wrong_speedup` is max(`wrong_speedups`) where `wrong_speedups` contains all the speedups one could have achieved for those examples where the heuristic made a wrong choice, i.e. a `max_wrong_speedup` of 1.37 means that the heuristic selected a choice, but the other choice would have been 1.37x faster. `gman_wrong_speedup` is the geomean of `wrong_speedups`.
The heuristic is learned as a regression tree, that returns higher values for better choices. The threshold decides how much better the better choice has to be for it to be returned, i.e. on A100 if the better choice is less than 1.702530x better than the other choice, "unsure" will be returned. This threshold is determined using the validation set.
A100
```
max_depth min_samples_leaf dataset correct wrong unsure total max_wrong_speedup gman_wrong_speedup threshold
15 5.0 10 train 2730 4 3023 5757 1.372220 1.193873 1.702530
16 5.0 10 val 878 0 1042 1920 NaN NaN 1.702530
17 5.0 10 test 925 2 993 1920 1.741708 1.354954 1.702530
18 5.0 10 hf-train 14 0 22 36 NaN NaN 1.702530
19 5.0 10 hf-inf 7 0 1 8 NaN NaN 1.702530
```
The numbers for huggingface only include tensors where each dim is >=512. If all tensors would have been included there would have been the following number of matmuls, where at least one dimension is unaligned:
A100 hf-train: 60
A100 hf-inf: 10
## Results on running huggingface locally
This only includes models where the learned heuristic made at least one decision. For the examples here, it takes around 0.25-0.3 seconds to perform autotuning for the padded and unpadded version, so each decision that the heuristic makes saves around 0.25-0.3 seconds.
#pad_mm_autotuning is the number of times autotuning happened in pad_mm and #heuristic_made_decision is the number of times the heuristic made a decision (i.e. it didn't return "unsure").
I ran huggingface locally, each model 5 times and took the median speedup and compilation_latency.
Results on huggingface training
```
name speedup_heuristic speedup_baseline speedup_diff compilation_latency_heuristic compilation_latency_baseline compilation_latency_diff comp_latency_reduction% #pad_mm_autotuning #heuristic_made_decision
BartForCausalLM 1.19 (+/- 0.00) 1.19 (+/- 0.00) -0.00 40.33 (+/- 1.13) 40.95 (+/- 0.78) -0.62 1.52 3 2
BartForConditionalGeneration 1.53 (+/- 0.06) 1.47 (+/- 0.05) 0.06 81.93 (+/- 5.20) 82.23 (+/- 1.92) -0.30 0.36 3 1
BlenderbotSmallForCausalLM 1.86 (+/- 0.04) 1.86 (+/- 0.00) 0.00 36.76 (+/- 0.49) 37.62 (+/- 1.33) -0.87 2.31 3 2
CamemBert 2.36 (+/- 0.01) 2.35 (+/- 0.01) 0.01 97.60 (+/- 1.91) 98.69 (+/- 1.35) -1.09 1.11 2 1
DistillGPT2 2.57 (+/- 0.01) 2.57 (+/- 0.01) 0.00 57.33 (+/- 0.77) 58.26 (+/- 1.41) -0.93 1.59 3 2
PLBartForCausalLM 2.07 (+/- 0.01) 2.06 (+/- 0.01) 0.01 32.54 (+/- 0.83) 34.65 (+/- 0.71) -2.11 6.10 3 2
PLBartForConditionalGeneration 1.87 (+/- 0.00) 1.88 (+/- 0.00) -0.01 58.45 (+/- 1.24) 58.95 (+/- 1.92) -0.50 0.85 3 1
RobertaForCausalLM 2.39 (+/- 0.01) 2.40 (+/- 0.01) -0.01 97.38 (+/- 1.52) 97.69 (+/- 1.18) -0.31 0.32 2 1
TrOCRForCausalLM 1.70 (+/- 0.00) 1.70 (+/- 0.00) -0.00 44.79 (+/- 1.33) 45.25 (+/- 1.08) -0.46 1.01 3 2
Mean difference in speedup: 0.01
Mean compilation latency saved: -0.80s
Mean compilation latency reduction: 1.68%
```
Results on huggingface inference
```
name speedup_heuristic speedup_baseline speedup_diff compilation_latency_heuristic compilation_latency_baseline compilation_latency_diff comp_latency_reduction% #pad_mm_autotuning #heuristic_made_decision
BartForCausalLM 1.11 (+/- 0.00) 1.11 (+/- 0.00) 0.00 19.02 (+/- 0.28) 19.40 (+/- 0.35) -0.38 1.95 3 2
BartForConditionalGeneration 1.26 (+/- 0.01) 1.23 (+/- 0.03) 0.03 36.84 (+/- 0.40) 36.55 (+/- 0.75) 0.30 -0.81 3 1
BlenderbotSmallForCausalLM 1.87 (+/- 0.02) 1.87 (+/- 0.01) 0.00 17.53 (+/- 0.31) 18.03 (+/- 0.43) -0.49 2.74 3 2
DistillGPT2 2.50 (+/- 0.02) 2.50 (+/- 0.01) 0.00 16.16 (+/- 0.29) 16.40 (+/- 0.18) -0.24 1.46 3 2
PLBartForCausalLM 1.93 (+/- 0.01) 1.94 (+/- 0.01) -0.00 15.30 (+/- 0.22) 16.01 (+/- 0.71) -0.71 4.43 3 2
PLBartForConditionalGeneration 1.98 (+/- 0.01) 1.98 (+/- 0.01) 0.00 25.90 (+/- 0.32) 26.58 (+/- 0.62) -0.67 2.53 3 1
TrOCRForCausalLM 1.61 (+/- 0.00) 1.62 (+/- 0.00) -0.01 21.38 (+/- 0.37) 21.85 (+/- 0.16) -0.47 2.16 3 2
Mean difference in speedup: 0.00
Mean compilation latency saved: -0.38s
Mean compilation latency reduction: 2.07%
```
For now, the heuristic can only be applied to decide whether to pad for mm. One could also learn heuristics for bmm and addmm.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128643
Approved by: https://github.com/Chillee, https://github.com/eellison
The default value of `rot90()` in the schema registry is `[0,1]` because we split the function schema by `", "`. There should be no space after `,` in `[0,1]`.
5c9d5272e4/aten/src/ATen/native/native_functions.yaml (L6120-L6126)
Then the the default value is formatted to `(0,1)` in `pyi` files. This PR manually adds an extra whitespace when rerendering the default value to a string.
```python
", ".join(string.split(","))
```
```python
# before
def rot90(input: Tensor, k: _int = 1, dims: _size = (0,1)) -> Tensor: ...
# after
def rot90(input: Tensor, k: _int = 1, dims: _size = (0, 1)) -> Tensor: ...
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129884
Approved by: https://github.com/ezyang
Looks like one of the first failures seen is `test_causal_variants_compile_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` when `test_causal_variants_causal_variant_CausalVariant_LOWER_RIGHT_shape0_cuda` passes.
What seems interesting here is that the `torch.compile` version fails while the eager version passes. Not sure what the difference would be here...
Nevertheless, is there a recommended mechanism to skip cuDNN SDPA as a backend for this test? CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125343
Approved by: https://github.com/Skylion007