gen_static_runtime_ops hasn't been updated in a while. In preparation for https://github.com/pytorch/pytorch/pull/127675 in which I need to re-run the codegen step for cumprod, I want to land these changes beforehand in case there are any other issues that arise.
I added a number of ops to the blocklist:
```
+ "_nested_tensor_storage_offsets",
+ "_nested_get_values", # no CPU backend
+ "_nested_get_values_copy", # no CPU backend
+ "_nested_view_from_jagged", # testing needs to be patched
+ "_nested_view_from_jagged_copy", # testing needs to be patched
+ "_nested_view_from_buffer", # testing needs to be patched
+ "_nested_view_from_buffer_copy", # testing needs to be patched
+ "_int_mm", # testing needs to be patched
+ "_to_sparse_csc", # testing needs to be patched
+ "_to_sparse_csr", # testing needs to be patched
+ "segment_reduce", # testing needs to be patched
```
Most of these are added just because testing doesn't work right now.
Additionally, a few `fft` ops seem to have been removed from native_functions.yaml; I'm guessing it's unlikely FFT would have been used in many real models though.
Differential Revision: [D58329403](https://our.internmc.facebook.com/intern/diff/D58329403/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128299
Approved by: https://github.com/YuqingJ
Summary:
The test is causing issues:
```
terminate called after throwing an instance of 'std::runtime_error'
what(): The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
graph(%A: Tensor, %driver: str?):
%bias: None = prim::Constant()
%ret = aten::linalg_svdvals(%A, %driver)
~~~~ <--- HERE
%cloned = aten::clone(%ret, %bias)
return (%cloned)
RuntimeError: torch.linalg.svd: keyword argument `driver=` is only supported on CUDA inputs with cuSOLVER backend.
```
Just block the op and re-run the codegen script to remove everything and update the generated ops.
Test Plan: Existing tests
Differential Revision: D39973860
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85983
Approved by: https://github.com/xuzhao9, https://github.com/tenpercent
Also Back out "Revert D39075159: [acc_tensor] Use SymIntArrayRef for overloaded empty.memory_format's signature"
Original commit changeset: dab4a9dba4fa
Original commit changeset: dcaf16c037a9
Original Phabricator Diff: D38984222
Original Phabricator Diff: D39075159
Also update Metal registrations for C++ registration changes.
Also update NNPI registration to account for tightened schema checking
Differential Revision: [D39084762](https://our.internmc.facebook.com/intern/diff/D39084762/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39084762/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84173
Approved by: https://github.com/Krovatkin
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh
Summary:
Add script to go through view ops in "native_functions.yaml" and auto-register them into static runtime and auto-generate op unit tests for each.
Overall there are 96 grouped view ops, among which 21 is already registered by hand; 9 (including sparse ops/training related ops etc.) are not the target of static runtime; 30 has list args or list ret; and 7 has non-basic types such as "Dimname", "MemoryFormat", etc. In summary, this script auto-generate 29 view ops for now.
Run `buck run //caffe2/torch/fb/jit:gen_static_runtime_ops` to generate static runtime ops, and the results with this script are,
```
total grouped native ops: 1582
grouped native ops with out variant: 548
generated functions groups with out variant: 241
view grouped native ops: 96
generated functions view groups: 29
overall generated : 270
```
The generated view ops are added in D36258968
Test Plan:
Generate static runtime ops: `buck run //caffe2/torch/fb/jit:gen_static_runtime_ops`
Unit tests: `buck run mode/opt //caffe2/benchmarks/static_runtime:static_runtime_cpptest`
Differential Revision: D36258767
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77105
Approved by: https://github.com/mikeiovine
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76203
Request for comments:
This change adds extra code generator support to generate out variant wrappers for operators with unstructured kernels.
The current version generates 105 new out variant wrappers in addition to the existing 136 auto-generated out variants wrappers.
This change shows that a simple tweak can increase the generated op coverage to 16% (241/1559) among all native ops described in native_functions.yaml no. matter if they are structured or not.
Command to generate out variant wrappers.
```
buck run //caffe2/torch/fb/jit:gen_static_runtime_ops
```
- AFTER this change
```
total grouped native ops: 1559
structured grouped native ops: 545
generated grouped native ops: 241
```
- BEFORE this change
```
total grouped native ops: 1503
structured grouped native ops: 540
generated grouped native ops: 136
```
To enable CI tests and make it easier to review, the generated ops are added in a separate diff: D35945633
More details:
We added a block list to remove the generation of around 10 operations that are deprecated or for which the unit test would fail. All generated ops are well *compiled* but the compiled unittest may not pass due to the lack of hand-picked test input values for certain ops. Among the 42 ops whose unittest does not pass, 1 (op "index_select") is repeated from the existing ops; 32 ops are fixed; and 9 ops are removed and blocked from generation because either it is not being commonly used in internal models such as "cholesky", "linalg_householder_product", sparse kernel "sspaddmm", or it causes some errors in static runtime such as "conj_physical" leads to an error in memory planner, and "binary_cross_entropy".
Test Plan:
OP generation:
```buck run //caffe2/torch/fb/jit:gen_static_runtime_ops```
Test generated ops:
```buck run mode/opt //caffe2/benchmarks/static_runtime:static_runtime_cpptest```
Reviewed By: tenpercent
Differential Revision: D34913736
fbshipit-source-id: a6f408321653c3589ae1c76826177fc403d59c44
(cherry picked from commit 6f4501730478dbaeeea7f3ad4f9d29bf6787e7c1)