Adds `c_shim_aten.{h/cpp}` and use this for `fill_`
This is the generated `c_shim_aten.cpp` for reference
```cpp
// WARNING: THIS FILE IS AUTOGENERATED BY torchgen. DO NOT MODIFY BY HAND.
// See 7e86a7c015/torchgen/gen.py (L2424-L2436) for details
// This file corresponds to the aten_shimified_ops list in torchgen/aoti/fallback_ops.py
#include <torch/csrc/inductor/aoti_torch/generated/c_shim_aten.h>
#include <torch/csrc/inductor/aoti_torch/utils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/CompositeExplicitAutogradFunctions.h>
#include <ATen/CompositeExplicitAutogradNonFunctionalFunctions.h>
#include <ATen/CompositeImplicitAutogradFunctions.h>
#else
#include <ATen/ops/fill.h>
#endif // AT_PER_OPERATOR_HEADERS
using namespace torch::aot_inductor;
AOTITorchError aoti_torch_aten_fill__Scalar(AtenTensorHandle self, double value) {
AOTI_TORCH_CONVERT_EXCEPTION_TO_ERROR_CODE({
at::fill_(
*tensor_handle_to_tensor_pointer(self), value
);
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/158974
Approved by: https://github.com/albanD, https://github.com/janeyx99
Summary:
# Context
See the first PR https://github.com/pytorch/pytorch/pull/153670
# This PR
1. Migrate 3 clamp ops from out-of-tree to in-tree(had to migrate the 3 ops altogether, because clamp.out calls all 3 stubs, which are also called by the other 2 ops):
- clamp.out
- clamp_min.out
- clamp_max.out
2. Also enabled structured kernel codegen for MTIA, which is needed by clamp
3. Also introduced the `--mtia` flag to torchgen to prevent OSS from gencoding MTIA code.(Otherwise we got such link error `lib/libtorch_cpu.so: undefined reference to at::detail::empty_mtia`)
Differential Revision: D74674418
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154015
Approved by: https://github.com/albanD, https://github.com/nautsimon
Added AOTIModelContainerRunnerMps and a shim for mps fallback ops.
I also added a mps-specific shim which contains one operator, which will be used to set arguments being passed to the Metal kernel:
```
AOTI_TORCH_EXPORT AOTITorchError aoti_torch_mps_set_arg(
AOTIMetalKernelFunctionHandle func,
unsigned idx,
AtenTensorHandle tensor);
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153964
Approved by: https://github.com/malfet, https://github.com/desertfire
Added AOTIModelContainerRunnerMps and a shim for mps fallback ops.
I also added a mps-specific shim which contains one operator, which will be used to set arguments being passed to the Metal kernel:
```
AOTI_TORCH_EXPORT AOTITorchError aoti_torch_mps_set_arg(
AOTIMetalKernelFunctionHandle func,
unsigned idx,
AtenTensorHandle tensor);
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153964
Approved by: https://github.com/malfet, https://github.com/desertfire
Summary:
# Context
The MTIA New Aten Backend work is essentially to move MTIA operators from pytorch out-of-tree to in-tree, with following benefits:
1. Avoid duplicate code copied from pytorch, e.g. view ops implementation, util functions.
2. Utilize TensorIterator and structured kernel codegen, avoid manual implementation of broadcasting, dtype casting, asserting, etc.
3. Eliminate MTIA's own codegen flow, which is unnecessary complexity.
4. Overall make MTIA's aten backend more pytorch native.
Differential Revision: D74672464
Pull Request resolved: https://github.com/pytorch/pytorch/pull/153670
Approved by: https://github.com/albanD, https://github.com/nautsimon
Reference: https://docs.astral.sh/ruff/formatter/black/#assert-statements
> Unlike Black, Ruff prefers breaking the message over breaking the assertion, similar to how both Ruff and Black prefer breaking the assignment value over breaking the assignment target:
>
> ```python
> # Input
> assert (
> len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
>
> # Black
> assert (
> len(policy_types) >= priority + num_duplicates
> ), f"This tests needs at least {priority+num_duplicates} many types."
>
> # Ruff
> assert len(policy_types) >= priority + num_duplicates, (
> f"This tests needs at least {priority + num_duplicates} many types."
> )
> ```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144546
Approved by: https://github.com/malfet
This is one of a series of PRs to update us to PEP585 (changing Dict -> dict, List -> list, etc). Most of the PRs were completely automated with RUFF as follows:
Since RUFF UP006 is considered an "unsafe" fix first we need to enable unsafe fixes:
```
--- a/tools/linter/adapters/ruff_linter.py
+++ b/tools/linter/adapters/ruff_linter.py
@@ -313,6 +313,7 @@
"ruff",
"check",
"--fix-only",
+ "--unsafe-fixes",
"--exit-zero",
*([f"--config={config}"] if config else []),
"--stdin-filename",
```
Then we need to tell RUFF to allow UP006 (as a final PR once all of these have landed this will be made permanent):
```
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -40,7 +40,7 @@
[tool.ruff]
-target-version = "py38"
+target-version = "py39"
line-length = 88
src = ["caffe2", "torch", "torchgen", "functorch", "test"]
@@ -87,7 +87,6 @@
"SIM116", # Disable Use a dictionary instead of consecutive `if` statements
"SIM117",
"SIM118",
- "UP006", # keep-runtime-typing
"UP007", # keep-runtime-typing
]
select = [
```
Finally running `lintrunner -a --take RUFF` will fix up the deprecated uses.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145101
Approved by: https://github.com/bobrenjc93
Fix: #141974
This PR makes `ViewMeta` sequence, present in functional tensors,
serializable with pickle. In order to accomplish that, it makes
`ViewMeta` an abstract class with overridable `forward` and `reverse`
functions. In this context, each operation that once instanciated
`ViewMeta`, should now create a new specialized class that inherits from
`ViewMeta. Therefore, this PR also uses codegen for creating these
specializations.
In summary, these are the changes this PR introduces:
- `ViewMeta` is turned into an abstract class (see
_FunctionalStorageImpl.cpp_). `forward` and `reverse` are pure virtual
functions that need to be implemented. `to_out_index` should be
implemented by operations that might return more than 1 output.
- New `ViewMeta` specializations for `resize_` and `_unsafe_view` are
created (see _FunctionalizeFallbackKernel.h_).
- New templates _ViewMetaClasses.{cpp,h}_ are created. They hold the
declaration and definition of the `ViewMeta` specializations, which
are automatically generated in the ATen codegen (see _gen.py_).
- New `_functionalization` Python sub-module is created (see
_Module.cpp_). It serves as namespace for the `ViewMeta`
specializations and `InverseReturnMode` enum.
- New template _ViewMetaClassesPythonBinding.cpp_ is created. It holds
the automatically generated Python bindings for the `ViewMeta`
specialization, which are generated in the torch codegen (see
_generate_code.py_).
Note that this PR makes use of codegen at 2 different moments:
- ATen codegen (_gen.py_): generates the `ViewMeta` specialized classes.
- Torch codegen (_generate_code.py_): generated the Python bindings for
them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/143712
Approved by: https://github.com/bdhirsh
* Automatically applies ruff rule 401. Turns loops into equivalent list comprehensions which are faster and do not leak the scope of the loop variables.
* list comprehensions not only often have better typing, but are 50+% faster than for loops on overhead. They also preserve length information etc and are better for the interpreter to optimize.
* Manually went back and made mypy happy after the change.
* Also fixed style lints in files covered by flake8 but not by pyfmt
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140980
Approved by: https://github.com/justinchuby, https://github.com/malfet
[AOTI] Introduce an extensibility mechanism for the c shim codegen to make it easy to produce c shims for out-of-tree OP kernels as well. Add c shim for XPU.
### Motivation
Since the current c shim codegen will only produce C wrappers for Op's registered in `aten/src/ATen/native/native_functions.yaml`, for the same backend, when a portion of out-of-tree OP's are not registered in that file, but are registered externally. For example, `third_party/torch-xpu-ops/yaml/native_functions.yaml` , in this case, the existing codegen can't fulfill the need to do extensions for the c shims from the out-of-tree OPs for the in-tree that has already been produced.
### Design
To extend the c shim with more OP for a backend from out-of-tree.
The PR provided a bool option `--aoti-extend` to indicate the codegen is to extend c shim from out-of-tree.
The generated c shim is stored in the `extend` subdirectory , for example:
```
torch/include/torch/csrc/inductor/aoti_torch/generated/c_shim_xpu.h
torch/include/torch/csrc/inductor/aoti_torch/generated/c_shim_xpu.cpp
torch/include/torch/csrc/inductor/aoti_torch/generated/extend/c_shim_xpu.h
torch/include/torch/csrc/inductor/aoti_torch/generated/extend/c_shim_xpu.cpp
```
example usage:
`python -m torchgen.gen --source-path third_party/torch-xpu-ops/yaml/ --xpu --aoti-extend --update-aoti-c-shim `
`--xpu`: generate c shim for XPU
`--aoti-extend `: this is an out-of-tree OPs(defined in `third_party/torch-xpu-ops/yaml/native_functions.yaml`) extend for in-tree ops(defined in `aten/src/ATen/native/native_functions.yaml`)
`--update-aoti-c-shim`: always generate c_shim_xpu.h for the extend c_shim.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136742
Approved by: https://github.com/EikanWang, https://github.com/desertfire
ghstack dependencies: #139025
[Intel GPU] Support RegisterXPU.cpp codegen and compile for the in-tree XPU structured GEMM ops.
Motivation: There are two parts of aten ops for XPU, one is in-tree ops like GEMM related OPs and the other is out-off-tree ops in torch-xpu-ops. For the in-tree part,since Pytorch uses native_functions.yaml registration and is equipped with convenient codegen capabilities, we want to take advantage of these benefits as well.
At the same time, since AOT Inductor also uses native_functions.yaml to generate c shim wrappers, we also need to enable this mechanism for XPU.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139025
Approved by: https://github.com/EikanWang, https://github.com/jansel, https://github.com/desertfire
This PR is a supplement to #130082. The previous PR #130082 fulfill the basic functionality of codegen, while we found it fails to handle the device sameness check in lots of uts. Current PR is aimed to facilitate the XPU device guard code generation.
With current PR, the code snippet in `RegisterXPU.cpp` is as follows, where we can see the device guard is successfully generated.
```c++
namespace {
at::Tensor & wrapper_XPU_Tensor_float_out_normal_out(const at::Tensor & mean, double std, ::std::optional<at::Generator> generator, at::Tensor & out) {
std::optional<Device> common_device = std::nullopt;
(void)common_device; // Suppress unused variable warning
c10::impl::check_and_update_common_device(common_device, out, "wrapper_XPU_Tensor_float_out_normal_out", "out");
c10::impl::check_and_update_common_device(common_device, mean, "wrapper_XPU_Tensor_float_out_normal_out", "mean");
const OptionalDeviceGuard device_guard(device_of(out));
return at::native::normal_out(mean, std, generator, out);
}
} // anonymous namespace
```
Nevertheless, without current change, the generated code is
```c++
namespace {
at::Tensor & wrapper_XPU_Tensor_float_out_normal_out(const at::Tensor & mean, double std, ::std::optional<at::Generator> generator, at::Tensor & out) {
// No device check
// DeviceGuard omitted
return at::native::normal_out(mean, std, generator, out);
}
} // anonymous namespace
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133980
Approved by: https://github.com/EikanWang, https://github.com/malfet
In gen.py, the code for generating CompositeViewCopyKernels.cpp includes *_native.h headers for "view_groups" but not "structured_native_functions". However, this results in the TORCH_API in the headers being ineffective and presents such functions being used outside libtorch_cpu.so
This patch ensures that gen.py includes the native headers for "structured_native_functions" in the same way as for "view_groups".
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131208
Approved by: https://github.com/bdhirsh