This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796 Enum contains duplicate value: {value}
PIE808 Unnecessary start argument in range
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
This PR enables all PIE rules on ruff, there are already some enabled rules from this family, the new added rules are
```
PIE796 Enum contains duplicate value: {value}
PIE808 Unnecessary start argument in range
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165814
Approved by: https://github.com/ezyang
This is follow-up of #165037. It generally recommended to use `is/is not` to compare types. Therefore this series of changes apply this suggestion in the code base, and it aims to finally enabling related linter checks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165142
Approved by: https://github.com/albanD
[relanding again after fixing internal build]
Summary:
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Approved by: https://github.com/ezyang
Test Plan:
contbuild & OSS CI, see e444cd24d4
Rollback Plan:
Differential Revision: D80435179
Pull Request resolved: https://github.com/pytorch/pytorch/pull/160869
Approved by: https://github.com/ezyang
# Summary
### Update
API
```Py
class AuxRequest(NamedTuple):
"""Request which auxiliary outputs to compute from flex_attention.
Each field is a boolean indicating whether that auxiliary output should be computed.
"""
lse: bool = False
max_scores: bool = False
class AuxOutput(NamedTuple):
"""Auxiliary outputs from flex_attention operation.
Fields will be None if not requested, or contain the tensor if requested.
"""
lse: Optional[Tensor] = None
max_scores: Optional[Tensor] = None
out_only = flex_attention(query, key, value, score_mod)
out_max, aux_max = flex_attention(
query,
key,
value,
score_mod,
return_aux=FlexAttentionAuxRequest(max_scores=True),
)
out_both, aux_both = flex_attention(
query,
key,
value,
score_mod,
return_aux=FlexAttentionAuxRequest(lse=True, max_scores=True),
)
```
Returns the max post mod scores from flex attention.
Not being able to break BC is kinda of annoying here since we end up with a combinatorial problem where if we need to add any more return vals we need to new kwargs that gate if they get returned by the function and need to support the 2**N additional args possible return groups.
Ideally there isn't much more we need to return, but we might want to think about how best to set this up for expansion in the future. I added kwarg only now
Maybe we make a `ExtraReturns` type kwarg that can grow and we don't need to keep adding new top level args.
We could also return a Struct that holds all the extra tensors and start deprecation cycle for logsumexp eventually returning just 1 `ExtraReturns` like struct with the tensors.
### Req Grad
I currently dont return a max_scores that supports backproping grads. I think this might be feasible but since max is essentially 1 hot on the inputs and a reduction we would either need to save another `max_location` from the forward or find the max_score but also only apply to first occurence if there is multiple equivalent scores (need to check if thats we define for vanilla max op in torch).
For now no grad, we can re-visit if needed.
## Perf
I am going to disable for flex_decode. Since at least initially the motivation is for training. I also more hard than it should be to have ops return nuns or optional tensors, If return max is at the false, we should probably just create a tensor of size zero so that we don't slow down the hot path.
```Shell
🔝 Top 5 TFlops Deltas (by absolute %):
shape: (5, 7)
┌────────────────┬────────────────┬───────────────────────┬───────────────┬──────────────┬───────────┬───────────┐
│ attn_type ┆ dtype ┆ shape(B,Hq,M,Hkv,N,D) ┆ TFlops (base) ┆ TFlops (max) ┆ delta ┆ pct_delta │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞════════════════╪════════════════╪═══════════════════════╪═══════════════╪══════════════╪═══════════╪═══════════╡
│ causal ┆ torch.bfloat16 ┆ (4, 16, 2048, 16, ┆ 249.514658 ┆ 243.078974 ┆ 6.435684 ┆ 2.647569 │
│ ┆ ┆ 2048, 64) ┆ ┆ ┆ ┆ │
│ alibi ┆ torch.bfloat16 ┆ (2, 16, 1024, 16, ┆ 57.971274 ┆ 56.633641 ┆ 1.337633 ┆ 2.361905 │
│ ┆ ┆ 1024, 64) ┆ ┆ ┆ ┆ │
│ noop ┆ torch.bfloat16 ┆ (4, 16, 1024, 16, ┆ 244.052884 ┆ 248.65129 ┆ -4.598406 ┆ -1.849339 │
│ ┆ ┆ 1024, 64) ┆ ┆ ┆ ┆ │
│ noop ┆ torch.bfloat16 ┆ (2, 16, 1024, 16, ┆ 280.71254 ┆ 275.686991 ┆ 5.025549 ┆ 1.822918 │
│ ┆ ┆ 1024, 128) ┆ ┆ ┆ ┆ │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 16384, 16, ┆ 152.970031 ┆ 150.489109 ┆ 2.480923 ┆ 1.648573 │
│ ┆ ┆ 16384, 64) ┆ ┆ ┆ ┆ │
└────────────────┴────────────────┴───────────────────────┴───────────────┴──────────────┴───────────┴───────────┘
🔺 Top 5 Positive TFlops Deltas (highest +%):
shape: (5, 7)
┌────────────────┬────────────────┬────────────────────────┬───────────────┬──────────────┬──────────┬───────────┐
│ attn_type ┆ dtype ┆ shape(B,Hq,M,Hkv,N,D) ┆ TFlops (base) ┆ TFlops (max) ┆ delta ┆ pct_delta │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞════════════════╪════════════════╪════════════════════════╪═══════════════╪══════════════╪══════════╪═══════════╡
│ causal ┆ torch.bfloat16 ┆ (4, 16, 2048, 16, ┆ 249.514658 ┆ 243.078974 ┆ 6.435684 ┆ 2.647569 │
│ ┆ ┆ 2048, 64) ┆ ┆ ┆ ┆ │
│ alibi ┆ torch.bfloat16 ┆ (2, 16, 1024, 16, ┆ 57.971274 ┆ 56.633641 ┆ 1.337633 ┆ 2.361905 │
│ ┆ ┆ 1024, 64) ┆ ┆ ┆ ┆ │
│ noop ┆ torch.bfloat16 ┆ (2, 16, 1024, 16, ┆ 280.71254 ┆ 275.686991 ┆ 5.025549 ┆ 1.822918 │
│ ┆ ┆ 1024, 128) ┆ ┆ ┆ ┆ │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 16384, 16, ┆ 152.970031 ┆ 150.489109 ┆ 2.480923 ┆ 1.648573 │
│ ┆ ┆ 16384, 64) ┆ ┆ ┆ ┆ │
│ causal ┆ torch.bfloat16 ┆ (4, 16, 1024, 16, ┆ 161.031318 ┆ 158.597808 ┆ 2.43351 ┆ 1.534391 │
│ ┆ ┆ 1024, 64) ┆ ┆ ┆ ┆ │
└────────────────┴────────────────┴────────────────────────┴───────────────┴──────────────┴──────────┴───────────┘
🔻 Top 5 Negative TFlops Deltas (lowest -%):
shape: (5, 7)
┌────────────────┬────────────────┬───────────────────────┬───────────────┬──────────────┬───────────┬───────────┐
│ attn_type ┆ dtype ┆ shape(B,Hq,M,Hkv,N,D) ┆ TFlops (base) ┆ TFlops (max) ┆ delta ┆ pct_delta │
│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
│ str ┆ str ┆ str ┆ f64 ┆ f64 ┆ f64 ┆ f64 │
╞════════════════╪════════════════╪═══════════════════════╪═══════════════╪══════════════╪═══════════╪═══════════╡
│ noop ┆ torch.bfloat16 ┆ (4, 16, 1024, 16, ┆ 244.052884 ┆ 248.65129 ┆ -4.598406 ┆ -1.849339 │
│ ┆ ┆ 1024, 64) ┆ ┆ ┆ ┆ │
│ alibi ┆ torch.bfloat16 ┆ (2, 16, 1024, 4, ┆ 175.546923 ┆ 177.81205 ┆ -2.265127 ┆ -1.273888 │
│ ┆ ┆ 1024, 128) ┆ ┆ ┆ ┆ │
│ sliding_window ┆ torch.bfloat16 ┆ (4, 16, 16384, 4, ┆ 156.282597 ┆ 158.209134 ┆ -1.926537 ┆ -1.217715 │
│ ┆ ┆ 16384, 64) ┆ ┆ ┆ ┆ │
│ sliding_window ┆ torch.bfloat16 ┆ (2, 16, 2048, 16, ┆ 232.542929 ┆ 235.140136 ┆ -2.597207 ┆ -1.104536 │
│ ┆ ┆ 2048, 128) ┆ ┆ ┆ ┆ │
│ alibi ┆ torch.bfloat16 ┆ (2, 16, 1024, 16, ┆ 169.652791 ┆ 171.475986 ┆ -1.823195 ┆ -1.063236 │
│ ┆ ┆ 1024, 128) ┆ ┆ ┆ ┆ │
└────────────────┴────────────────┴───────────────────────┴───────────────┴──────────────┴───────────┴───────────┘
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/161667
Approved by: https://github.com/Chillee, https://github.com/BoyuanFeng
This might cause some new DDEs on call sites that do not use is_contiguous_or_false() or sym_is_contiguous()
but want to find those call sites to handle this properly by calling is_contiguous_or_false() and not is_contiguous() explitly when appropriate.
I had to fix one issue after removing the implicit size oblivious reasoning. here is context
we defined in this https://github.com/pytorch/pytorch/pull/157472 sym_is_contiguous to be the function computing contiguity for dynamic shapes in c++. It returns a symbolic expression that represents contiguity and guaranteed not to throw a DDE.
when people call is_contiguous we do sym_is_contiguous().guard_bool()
when people call is_contiguous_or_false we do sym_is_contiguous().guard_or_false()
one issue not handled well was this path
```
c10::SymBool TensorImpl::sym_is_contiguous_custom(
at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_python_custom(SizesStridesPolicy::CustomStrides))) {
return pyobj_slot_.load_pyobj_interpreter()->is_contiguous(
this, memory_format);
}
return sym_is_contiguous_default(memory_format);
}
```
namely if we call sym_is_contiguous_custom but we have matches_python_custom(SizesStridesPolicy::CustomStrides) return true , then we used to call is_contiguous(this, memory_format);
This used to go through the load_pyobj_interpreter and end up calling the python is_contiguous call which used implicit size oblivious reasoning.
once we removed that implicit size oblivious reasoning, the right thing we want is to call
return pyobj_slot_.load_pyobj_interpreter()->sym_is_contiguous(this, memory_format);
otherwise we would get DDE even if the caller is doing sym_is_contiguous.
so I had to define it for pyinterpreter, and then I had to override it for nested tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159197
Approved by: https://github.com/ezyang
This only works for the jagged layout and for the non-batch and non-jagged dimensions.
I did this mostly by copy-pasting from the existing softmax implementation, but it seems fairly straightforward and I think it should work.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159662
Approved by: https://github.com/jbschlosser
AOTDispatch doing AOT backward graph preparation does not know real tangents that user will specify when runs backward.
AOTD guesses the tangents. Before - we guessed that memory format of tangents will be as memory format of corresponding outputs. And if specified tangents at runtime are not the same memory format as we guessed during compilation, AOTD does coercion (copy) to guessed memory_format
But as Horace found, there are popular use cases, where the outputs of compiled region will be in specific memory_format. E.g. in 4D tensor transposing dims 1 and 2.
https://github.com/karpathy/nanoGPT/blob/master/model.py#L57
This PR changes the logic, that AOTD expects the same "strideness" of tangents as outputs. As a result it will avoid coercion for the case of transposed dims.
Limitations:
We keep guessing memory_format for:
1/ Dynamic shapes (needs more changes)
2/ Tensor subclasses (needs more changes)
Other changes:
test_torchinductor was always creating contiguous tangents via `torch.randn()`, changing them to be `torch.randn_like()` to compare computation with the same strideness.
(E.g. for cuda float16 strideness affects numerics for fft ops).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144579
Approved by: https://github.com/bdhirsh
Disabled by default for now behind `TORCH_CUDNN_SDPA_NESTED_TENSOR_ENABLED=1`
Just wanted to get this out before starting a series of SDPA cleanup PRs---the biggest thing is we don't need the boilerplate around all of the `build_graph_and_tensors*` functions anymore as we can now use the `UID`-style referencing of tensor nodes as was done for the Conv-V8 API backend.
CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141178
Approved by: https://github.com/jbschlosser
Disabled by default for now behind `TORCH_CUDNN_SDPA_NESTED_TENSOR_ENABLED=1`
Just wanted to get this out before starting a series of SDPA cleanup PRs---the biggest thing is we don't need the boilerplate around all of the `build_graph_and_tensors*` functions anymore as we can now use the `UID`-style referencing of tensor nodes as was done for the Conv-V8 API backend.
CC @drisspg
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141178
Approved by: https://github.com/jbschlosser
Fixes 3 issues:
1. The test wasn't actually testing SDPA: both were checking cuda, and the inputs to SDPA were not transposed.
2. FlopCounterMode has been renamed _FlopCounterMode (and a wrapper named FlopCounterMode has been added)
3. offsets_to_list also needs to ignore the actual offset values if offsets is a meta tensor.
Differential Revision: [D69558785](https://our.internmc.facebook.com/intern/diff/D69558785)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147032
Approved by: https://github.com/jbschlosser
Fixes#146404
Adds changes to the matmul and matmul_backward operation for nested jagged tensors, to support back propagation when the output is a regular strided tensor.
This required adding support for the nested matmul operation to work when the nested tensor wasn't 'self', i.e
`A@B` where `A` isn't nested but `B` is.
The operation schemas had to be updated to reflect that either input can be a strided tensor instead (and the gradient), so an extra assertion is added in an edge case where neither input is nested.
Unit tests are also added.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/146405
Approved by: https://github.com/soulitzer, https://github.com/jbschlosser
Fixes#144761
This PR adds NJT impls for those *_like functions that were previously missing:
* `full_like()`
* `rand_like()`
* `randint_like()`
It also fixes a bug in existing *_like functions when a new device is specified. Fix is to also transfer `offsets` / `lengths` to the new device.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144889
Approved by: https://github.com/soulitzer
Updated nested tensor docs to be NJT-centric (instead of NST-centric). They now include:
* High-level description of NST vs. NJT + a recommendation to use NJT
* General NJT construction / usage
* torch.compile() integration w/ dynamic shapes
* Common errors and how to fix them
* Contribution guide
* Data layout / shape information (with diagram)
* Links to more extensive tutorials involving Transformers / SDPA / FlexAttention
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145402
Approved by: https://github.com/soulitzer
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
This PR implements missing backward support for NJT matmul. Notably, for dense tensors, matmul dispatches to bmm. However, due to historical reasons related to NST, NJT handles matmul directly, and thus can't rely on the CompositeImplicit impl of matmul to get the derivative formula.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144587
Approved by: https://github.com/soulitzer
ghstack dependencies: #144586
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
This PR implements the missing `fill.Scalar` support, which works fine for contiguous inputs, but there is still some AOTAutograd debugging required to handle non-contiguous transposed NJTs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144586
Approved by: https://github.com/soulitzer
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
Before this PR, `frexp()` for NJT was handled via the unary pointwise fallback. The op returns a tuple, however, and the fallback doesn't handle that. This PR defines an explicit impl for `frexp()` that wraps both returned `(mantissa, exponent)` as NJTs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144585
Approved by: https://github.com/soulitzer
ghstack dependencies: #144582, #144583, #144584
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
Implements `chunk()` backward on the batch dim, which was left out before. This PR unbinds the components and invokes `copy_()` on these to pass along the appropriate gradients.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144584
Approved by: https://github.com/soulitzer
ghstack dependencies: #144582, #144583
Part of my BE project addressing NJT bugs surfaced via OpInfo tests.
`value_selecting_reduction_backward()` is used in the backward for min / max, so this PR implements it for NJT. Notably, this isn't enough for reducing over the ragged dim, since that results in a dense tensor and thus NJT's torch_dispatch will not be called for this op. We need factory function support for nested ints to fix that case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144583
Approved by: https://github.com/soulitzer
ghstack dependencies: #144582
Allow mutations mutations for subclasses that are non-contiguous.
Changes:
Removing assert in collect_metadata_analysis
Main requested testcase:
Compilation of NJT.index_put()
Adding test in test_nestedtensor.py, that compiles NJT.index_put()
It is decomposed to NJT split,unbind, which needed additional `torch._check`, `torch._check_is_size` for NJT.unbind() and guard_size_oblivious() usage in _meta_registrations and _inductor/lowering.py.
Special case:
If tangent is mutated outside of the graph, it does not participate in backward graph. Autograd in this case will set this tangent to zeros tensor.
We handle it separately in CompiledFunction.backward: not doing any processing for this tangent and broadcast to number of expected subclass unwrapped arguments.
disabling for dynamo 2 tests:
1/ For nested tensor - symbolic shapes issue on nested_tensor index operation that does splits [0, 0, 0] - there is a failure with "pending unbacked symints". This PR does not add more .tolist()/item() ops than it was before.
2/ As we do not fail with exception in collect_metadata_analysis new paths for dynamo started working and it started failing with smth strange that set_ in storage_offset (because of test for views) handling updates storage "cpu" -> "meta"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139630
Approved by: https://github.com/bdhirsh
**Background:** conversion from outer dim -> inner dim makes the (previously valid) assumption that the ragged dim is immediately next to the batch dim. This is no longer the case after #137125.
This PR:
* Updates the outer dim -> inner dim conversion logic to match the actual ragged_idx. Since ragged_idx tells us where the packed ragged / batch dim is, both ragged and batch outer dims should map to this inner dim. The conversion logic must now take in `ragged_idx` to make this possible, so the PR updates all call-sites to pass this.
* Fixes outputs across keepdim settings when reducing over ragged / batch dims.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/142173
Approved by: https://github.com/drisspg
This PR contains three `unsqueeze()`-related fixes for NJT:
1. Adjusts the output's `_ragged_idx` when `unsqueeze()` inserts a dim before the ragged dim
2. Corrects the unbind reference for `unsqueeze()` after the last input dim. For this case, the dim kwarg canonicalization logic needs to be applied wrt `inp.dim() + 1` to account for `dim=-1` properly
3. Adds ragged dim support to `unsqueeze()`, allowing for e.g. `(B, j1, D) -> (B, 1, j1, D)`. This is okay now after #137125
Note that `unsqueeze()` still doesn't support batch dim operation, and arguably should never support this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/141392
Approved by: https://github.com/cpuhrsch
ghstack dependencies: #141500, #140736, #140161
This PR introduces `ExtraOpData`, a structure that contains op metadata regarding whether the op is a view and the dim-related args it accepts. It also populates a huge database for dim-wise / view ops with this info.
Test logic (sample input generation, references) have been updated to utilize this data. It allows for a fairly generic set of sample inputs & a reference for the class of ops that accept a single NJT and operate dim-wise (AKA "unary dimwise ops").
Testing is added over the following ops:
* `chunk()`
* `narrow()`
* `select()`
* `split()`
* `split_with_sizes()`
* `squeeze()`
* `unflatten()`
* `unsqueeze()`
Most of the above do not operate on the ragged / batch dims or on non-contiguous NJTs, so the proper xfails are added as needed.
I also slipped in a couple minor fixes (sorry):
1. The `_wrap_jagged_dim()` helper now avoids assuming the `nt._ragged_idx == 1` and allows for a batch dim to be a valid input, disambiguating the converted inner dim as necessary through an additional `operating_on_batch` return value (i.e. both dim=0 and dim=1 map to dim=0 on the inner values tensor, since that dim represents a packed ragged dim for all batch items)
2. Padded dense -> NJT conversion requires shape gymnastics to operate with the restrictive FBGEMM kernel. The gymnastics were slightly wrong for the transposed NJT case, and this PR fixes that
Pull Request resolved: https://github.com/pytorch/pytorch/pull/140161
Approved by: https://github.com/Skylion007, https://github.com/cpuhrsch
ghstack dependencies: #141500, #140736