Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
Summary:
This PR suppresses clang-tidy warnings in the codebase (for now) so that we can re-enable clang-tidy checks on master.
I ran this script to add the `NOLINTNEXTLINE` comments (on a devserver):
```bash
python3 setup.py develop
# Uses same script that's run on CI and adds the -j (parallel), -s (add comments), -k (continue if diagnostic errors are found) options
python3 tools/clang_tidy.py \
-j \
-s \
-k \
-v \
--paths torch/csrc/ \
-g"-torch/csrc/jit/passes/onnx/helper.cpp" \
-g"-torch/csrc/jit/passes/onnx/shape_type_inference.cpp" \
-g"-torch/csrc/jit/serialization/onnx.cpp" \
-g"-torch/csrc/jit/serialization/export.cpp" \
-g"-torch/csrc/jit/serialization/import.cpp" \
-g"-torch/csrc/jit/serialization/import_legacy.cpp" \
-g"-torch/csrc/onnx/init.cpp" \
-g"-torch/csrc/cuda/nccl.*" \
-g"-torch/csrc/cuda/python_nccl.cpp" \
-g"-torch/csrc/autograd/FunctionsManual.cpp" \
-g"-torch/csrc/generic/*.cpp" \
-g"-torch/csrc/jit/codegen/cuda/runtime/*" \
-g"-torch/csrc/deploy/interpreter/interpreter.cpp" \
-g"-torch/csrc/deploy/interpreter/interpreter.h" \
-g"-torch/csrc/deploy/interpreter/interpreter_impl.h" \
-g"-torch/csrc/deploy/interpreter/test_main.cpp"
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60649
Test Plan: Verified changes by re-running the script (without the `-s` option) and seeing no warnings/errors.
Reviewed By: walterddr, janeyx99
Differential Revision: D29504258
Pulled By: 1ntEgr8
fbshipit-source-id: 78310b30ee8213b73ddb4771ad874665323e7a4e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58873
BackenDebugInforRecorder
Prior to this PR:
In order to generate debug handles corresponding to the graph being
lowered, backend's preprocess will call generate_debug_handles and will
get map of Node*-to-debug_handles.
In order to facilitate this, to_backend will own
BackendDebugInfoRecorder and initialize thread local pointer to it.
generate_debug_handle function will query thread local pointer to see if
there is a valid BackendDebugInforRecorder for the context. If there is
it will generate debug handles.
After this PR:
Signature of preprocess is changed such that backends have to register
preprocess that accepts instance of BackendDebugInfoRecorder by
reference. generate_debug_handles is no more a free function but becomes
part of the API of BackendDebugInfoRecorder. Now backend's preprocess
function will call generate_debug_handles on BackendDebugInfoRecorder
instead of free function.
Reason for this change:
With RAII that initializes thread local pointer, results in a lose
contract with backends, which may result in backends not storing
debug information. Making it part of API results in
backends having to be aware of BackendDebugInfoRecorder and explicitly
chosing not to generate/store debug information if they chose to do so.
Test Plan:
backend tests
Imported from OSS
Reviewed By: jbschlosser, raziel
Differential Revision: D28648613
fbshipit-source-id: c9b7e7bf0f78e87023ea7bc08612cf893b08cb98
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57441
debug info
Previous diffs did not save operator name in debug info. For delegated
backends that only idenfity op for profiling with debug handle, operator
name should be stores as well.
Furthermore to complete debug informaton also serialize function name.
Test Plan:
Existing lite interpreter and backend tests
Existing lite interpreter and backend tests
Imported from OSS
Differential Revision:
D28144581
D28144581
Reviewed By: raziel
Pulled By: kimishpatel
fbshipit-source-id: 415210f147530a53b444b07f1d6ee699a3570d99
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55462
handles and symbolicate exception callstack thrown from backend.
Objective of this diff is to achieve improve error reporting when
exceptions are raised from lowered backend. We would effectively like to
get the same model level stack trace that you would get without having
lowered some module to backend.
For example:
```
class AA(nn.Module):
def forward(self, x, y):
return x + y
class A(nn.Module):
def __init__(...):
self.AA0 = AA()
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
class B(nn.Module):
def forward(self, x):
return x + 2
class C(nn.Module):
def __init__(...):
self.A0 = A()
self.B0 = B()
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
```
If the we then do C().forward(torch.rand((2,3)), torch.rand(14,2))) we
will likely see error stack like:
```
C++ exception with description "The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in forward
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
```
We would like to see the same error stack if we lowered C.A0 to some
backend.
With this diff we get something like:
```
Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in FunctionName_UNKNOWN
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in FunctionName_UNKNOWN
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in FunctionName_UNKNOWN
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in FunctionName_UNKNOWN
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
```
This is achieved in 3 parts:
Part 1:
A. BackendDebugInfoRecorder:
During backend lowering, in `to_backend`, before calling the preprocess
function corresponding to the backend. This will facilitate recording of
debug info (such as source range + inlined callstack) for the lowered module.
B. Instantiate WithBackendDebugInfoRecorder with BackendDebugInfoRecorder.
This initializes thread local pointer to BackendDebugInfoRecorder.
C. generate_debug_handles:
In preprocess function, the backend will call generate_debug_handles
for each method being lowered separately. generate_debug_handles
takes `Graph` of the method being lowered and returns a map
of Node*-to-debug_handles. Backend is responsible for storing debug
handles appropriately so as to raise exception (and later profiling)
using debug handles when the exception being raised corresponds to
particular Node that was lowered.
Inside generate_debug_handles, we will query the current
BackendDebugHandleInfoRecorder, that is issuing debug handles. This debug
handle manager will issue debug handles as well as record
debug_handles-to-<source range, inlined callstack> map.
D. Back in `to_backend`, once the preprocess function is has finished
lowering the module, we will call `stopRecord` on
BackendDebugInfoRecorder. This will return the debug info map. This
debug info is then stored inside the lowered module.
Part 2:
Serialization:
During serialization for bytecode (lite interpreter), we will do two
things:
1. Extract all the source ranges that are contained inside
debug_handles-to-<source range, inlined callstack> map for lowered
module. This will be source range corresponding to debug handles,
including what is there is inlined callstack. Since we replaced original
module with lowered module, we wont be serializing code for the original
module and thus no source range. That is why the source range will have
to be stored separately. We will lump all the source ranges for all the
lowered modules in one single debug_pkl file.
2. Then we will serialize debug_handles-to-<source range, inlined
callstack> map.
Now during deserialization we will be able to reconstruct
debug_handles-to-<source range, inlined callstack> map. Given all
debug_handles are unique we would not need any module information.
Test Plan:
Tests are added in test_backend.cpp
Tests are added in test_backend.cpp
Imported from OSS
Differential Revision:
D27621330
D27621330
Reviewed By: raziel
Pulled By: kimishpatel
fbshipit-source-id: 0650ec68cda0df0a945864658cab226a97ba1890
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55062
This diff introduces the following changes:
1. InlinedCallStack pickler/serializer is introduced. It is serialized
as a tuple of {module_instance_info, source range tag, callee:InlinedCallStack}
Module instance info is serialized as tuple of {class_type_name,
instance_name}.
Note that callee of the serialized inlined callstack points to the tuple
of already serialized callstack. This means the first callstack ptr to
serialize, will serialize entire path of the tree, where some callee
nodes might be shared with callstack pointers that will be serialized
subsequently. Pickler supports memoization of pickled objects, where if
a tuple has been serialized then object id is obtained instead of
serialized object again. Thus we stll serialize the tree and not every
path from the root separately. Furthermore, InlinedCallStackSerializer
also uses cache to lookup the pointer and return the serialized IValue.
Furthermore, note that we must also serialize the source range of
InlinedCallStack. In order to this serializer requires map of
source-range-tags-to-source-range map. This was done in the previous
diff, where as part of source range serialization we also generate
unique tags. These are the tags that are serialized in InlinedCallStack.
Thus during deserialization we would have to deserialize source range
before deserializing InlinedCallStacks.
2. Furthermore, each serialized InlinedCallStack is serialized with a
unique debug_handle and source range tag.
BackendDebugHandleManager manages generation of
unique debug handles and saves the map of
debug-handles-to-{source_range_tag, inlined-callstack-ptr}.
This map is then serialized as callstack_debug_map.pkl. Note that
inlined callstack is not sufficient to get all the source information
since it contains source information about the nodes which are inlined.
The top-of-the-stack (or bottom) node, which is the actual op node, is
not part of the inlined callstack pointer and thus the source range of
this node is serialized separately using source_range_tag. This is
similar to how JIT creates callstack in
torch/csrc/jit/runtime/interpreter.cpp
Unique debug handles facilitates exception throwing or profiling using
just the debug handle without any further qualifications, such as which
function or module the inlined-callstack belongs to.
Furthermore, this diff refactors the old mobile code for tracking
module hierarchy information per op. Mainly now bytecode serialization
will serialize debug handles corresponding to ops/nodes in graph and
have callstack_debug_map.pkl help generate:
1. Entire callstack and
2. Module hierarchy information.
Test Plan:
python test/mobile/test_lite_script_module.py TestLiteScriptModule
./build/bin/test_jit --gtest_filter=*ModuleInfo
Imported from OSS
Reviewed By: raziel
Differential Revision: D27468709
fbshipit-source-id: 53e2413e7703ead01c77718b7c333c7c6ff50a23